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Abstract

Background: Each omics platform is now able to generate a large amount of data. Genomics, proteomics,
metabolomics, interactomics are compiled at an ever increasing pace and now form a core part of the
fundamental systems biology framework. The integrative analysis of these data that are co jointly measured on

the same samples represent analytical challenges to extract and visualise meaningful information.

Results: The exploratory statistical approaches ‘regularized Canonical Correlation Analysis’ and ‘sparse Partial
Least Squares regression’ have been recently developed to deal with highly dimensional data, to integrate two
types of ‘omics’ data and to select relevant information. Using the results of these methods, we propose further
graphical developments to generate Clustered Image Map and Relevance Networks to better understand the
relationships between ‘omics’ data and to better visualise the correlation structure between the different entities.
We demonstrate the usefulness of such graphical outputs on several biological data sets. Using Cystoscape and
GeneGo to further assess the biological relevance of such graphical tools, we show that the inferred networks are

relevant to the system under study.

Conclusions: Such graphical outputs are undoubtedly useful to aid the interpretation of these promising
integrative analysis tools and will certainly help in addressing fundamental biological questions and

understanding systems as a whole.

Availability: The methods described in this paper are implemented in the freely available R package mixOmics.



Background

‘Omics’ data now form a core part of systems biology by enabling researchers to understand the integrated
functions of a living organism. However, the available abundance of such data (genomics, proteomics,
metabolomics, interactomics ...) is not a guarantee of obtaining useful information in the investigated
system if the data are not properly processed and analyzed to highlight this useful information. A major
challenge with the integration of omics data is therefore the extraction of discernable biological meaning
from multiple omics data.

Recently, several authors have further improved statistical methodologies to integrate two highly
dimensional data sets. Such methodologies include regularized and sparse variants of Canonical Correlation
Analysis (CCA) [1-5] and Partial Least Squares (PLS) regression [6,7] - also referred as Projection to
Latent Structures. However, most of the articles that present such approaches are limited to numerical
results, and little attention is paid to either the interpretation of the results or the graphical outputs.

The typical plot that accompanies CCA or PLS regression is a diagram of the correlations between variates
and variables sometimes called correlation circle plot [8-12] as used with Principal Component Analysis
(PCA). This graphical display allows to visualise strongly associated (or correlated) variables that are
projected in the same direction and that are close the circle of radius one. However, in the
high-dimensional context where many points (perhaps several thousands) are plotted on the correlation
circle, the readability of such plot and the interpretability of the correlation structure of the variables can
be very difficult. The variables in both data sets are intermingled as points on the plot, which interferes
with clear labelling, and therefore a clear visualization. Thus, there is a need to simultaneously display the

variables of the different types to visualise their association in a high dimensional setting.

We propose to generate Clustered Image Map (CIM) representation [13,14] and to infer Relevance
Networks based on the results of CCA or PLS methods. Network correlation analysis has been extensively
used to integrate metabolomics and transcriptomics data to identify co-regulation [15,16]. For example [17]
recently proposed network cartography based on Pearson correlation to generate similarity matrices after
applying PCA. We propose instead to use CCA or PLS as a first step analysis as these approaches are

directly focusing on statistical integrative analysis of two highly dimensional data sets. The end products



are representations of the variables associations that enable biologists to explore and interpret the data in a
natural and intuitive manner through statistical organization and graphical displays. These methods are

implemented in the R package mixOmics! that is dedicated to the integrative analysis of ‘omics’ data [18].

In the following Results section, we first assess the relevance of the proposed CIM and Relevance Networks
on a simulated data set. We then illustrate the use of such graphical outputs on two real data sets, provide
a thorough biological interpretation of the results obtained and compare the inferred statistical networks to
known biological networks using data and knowledge driven analyses. The Methods section gives a brief
introduction of the two already published methodologies RCCA and SPLS which outputs are used to
compute pair-wise similarity matrices. We then detail how these matrices can generate such CIM and

Relevance Networks representations.

Results and Discussion

We investigate the relevance of CIM and Relevance Networks representations, firstly on a simulated data
set to assess if the proposed graphical outputs are able to highlight pair-wise association structure between
two data sets and to evaluate the quality of the inferred networks; and secondly on two biological data sets

to assess the biological relevance of such graphical tools.

Simulated data
Data sets

We generated two data sets X and Y with an equal number of 30 observations in each data set, and
applied RCCA and PLS-can (see Methods section). Both graphical representations CIM and Relevance
Networks can be obtained for each methodology. A subset of relevant variables in X were associated with a
subset of relevant variables in Y according to the model described below, and the remaining variables were
simulated as noise. This simulation study enables to assess if the graphical representations can differentiate

the associated groups of relevant variables from the noisy variables.

e The relevant X and Y variables were generated according to a normal distribution with zero mean

and covariance matrix % defined by :
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Details about the covariance matrices can be found in Additional file 1.

e X contains three independent sets of respectively 10, 10 and 3 cross-correlated variables:
X, =[x, X, X, =[X!,..., X and X, = [X],X2,X?]; and Y contains three
independent sets of respectively 16, 5 and 2 cross-correlated variables: Y, = [YAl, e ,YAM],

Y, =[Y},....Y?] and Y, = [V}, Y2]. These groups of variables are associated with each other

according to the cross-correlation matrix X, .

e The relevant variables in X, and Y, were generated with an absolute cross-correlation varying
between 0.5 and 0.93, X, positively correlated with {Y;k :k=1,2,6,13, 15}, and negatively
correlated with the other variables in Y, {Y;k 1k =3:5,7:12,14, 16}. The variables in X, and Y}
were generated with a positive cross-correlation varying between 0.5 and 0.85; and the variables in
X, and Y, were generated with an absolute cross-correlation varying between 0.81 and 0.93, X, is

positively correlated with YC1 and is negatively correlated with YCQ.

e The irrelevant (noisy) variables were simulated with a normal distribution with zero mean and
covariance identity matrices and were added to the sets such that final data set contained 50
variables for X and 100 variables for Y. These variables are independent within the sets X and Y

and with each other.

Analysis process

RCCA was applied to these data sets with regularization parameters A\; = 0.889 and Ao = 0.889. The
regularization parameters were chosen using 10-fold cross-validation procedure on a regular grid of size
10 x 10 defined on the region 0.001 < A; <1, 0.001 < Ay < 1. To graphically represent the results of
RCCA, we chose the first three dimensions as the canonical correlations values were of 0.959, 0.925, and
0.881, followed by much lower values. The tuning of the regularization parameters and the number of

components is detailed in [19].

Figure 1 displays the CIM obtained with RCCA. The pair-wise association matrix was computed (see
section Methods) for the first 3 dimensions. The Euclidian distance and the average agglomeration method
were used for the hierarchical clustering. In the CIM display, each coloured block represents an association
between subsets of the X-variables and the Y-variables. The red colour indicates that the X and Y

clusters are positively correlated (cluster X, and {YXC :k=1,2,6,13, 15}, cluster X, and Y,, and cluster
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Figure 1: CIM from simulated data. CIM was derived using the cim function in the mixOmics package on
the simulated data with the RCCA method. The red and blue colours indicate strong positive and negative
correlations respectively, whereas yellow or green indicate weaker correlation values.

X, and Y!), and the blue colour indicates a negative correlation in the X-Y cluster (cluster X, and
{YA’€ ck=3:57:1214, 16}7 and cluster X, and YCQ)7 whereas yellow or green indicate weaker correlation
values. The dendrograms on the top and the left hand side of the map indicate how the clusters join, the

longer the distance, the sharper the boundary between the coloured blocks.

The Relevance Networks obtained with PLS-can are displayed in Figure 2. Similarly to RCCA, the
pair-wise association matrix was computed (see section Methods) for the first 3 dimensions. The Relevance
Networks were produced using the network function in the mixOmics package, with a fixed threshold set to
0.53. Three relevant networks were obtained. It can be seen that each network links the corresponding

correlated subsets: X, with Y,, X, with Y, and X with Y. Similar networks were obtained with RCCA.

Quality of the inferred network
We then investigated the accuracy of the generated networks with this same simulation setup. We
considered as positive edges a simulated correlation between two variables (represented as nodes) greater

than 0.5 in absolute value and negative otherwise. False positive occurs in the resulting network when an
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Figure 2: Relevance networks from simulated data. Relevance networks obtained with SPLS-can on
the simulated data using the network function in the mixOmics package. Red and blue edges indicates
positive and negative correlation respectively. X and Y variables are represented respectively as circles and
rectangles.

edge links two variables with a correlation less than 0.5. False negative occurs when two variables with a
correlation less than 0.5 are linked in the network. Five hundred simulations with 30 samples were
performed. For each simulated X and Y variables, networks were inferred from the first three components
of PLS-can for a threshold ranging from 0 to 1 with a step of 0.025. Positive Predictive Values (PPV, the
proportion of correctly identified edges among all positive edges) and sensitivity (the proportion of

positives edges correctly identified) were averaged over the 500 inferred networks for each threshold value.

Figure 3 displays the corresponding PPV and sensitivity. For this simulation setup the PPV is very close
to 1 for a threshold higher than 0.45. This indicates that if an edge is built in the network then the
probability that it actually corresponds to a true edge is very high. Regarding sensitivity, Figure 3 shows

that the network builds almost all or all true positives edges for a threshold higher than 0.4.

This simulation study shows that Relevance Networks and CIM derived from PLS-can and RCCA are able
to highlight the relevant variables amongst the noisy ones and pinpoint the pair-wise association structure

between the two data sets. In the following, we illustrate the use of such graphical outputs on highly



dimensional data sets and discuss the biological relevancy of the networks obtained.
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Figure 3: Results of the accuracy study. Sensitivity (triangle), Specificity (diamond), Positive Predictive
Value (circle) for n = 15 (left) and n = 30 (right).

Biological data
Data sets

These data sets are publicly available in the mixOmics package [18].

Nutrimouse data. The data come from a nutrigenomic study [20] in which 40 mice from two genotypes
(wild-type and PPAR« -/- deficient) were fed with five diets with contrasted fatty acid compositions. Oils
used for experimental diets preparation were corn and colza oils (50/50) for a reference diet (REF),
hydrogenated coconut oil for a saturated fatty acid diet (COC), sunflower oil for an Omega6 fatty acid rich
diet (SUN), linseed oil for an Omega3 rich diet (LIN) and corn/colza/enriched fish oils (43/43/14) for the
FISH diet. Expression of 120 genes in liver cells were acquired through microarray experiment and

concentrations of 21 hepatic fatty acids were measured by gas chromatography.

Liver toxicity data. The data come from a liver toxicity study [21] in which 64 male rats of the inbred strain
Fisher F344/N were exposed to low (50 mg/kg or 150 mg/kg) or to high (1500 mg/kg or 2000 mg/kg)
doses of acetaminophen (paracetamol) in a controlled experiment. Necropsies were performed at 6, 18, 24

and 48 hours after exposure and the mRNA from the liver was extracted. Ten clinical chemistry



measurements of variables containing markers for liver injury are available for each subject and the serum

enzymes levels are numerically measured.

Analysis process

To take into account the biological question of each study, we applied SPLS-can to the Nutrimouse data
and SPLS-reg to Liver Toxicity (see the Methods section for a description of these methodologies). In the
Nutrimouse study, it cannot be assumed that variations in one set of variables can cause variations in the
other one as we do not a priori know if gene expression changes imply fatty acid concentrations changes or
inversely. Therefore, the use of SPLS-can is justified to perform a symmetric analysis [1]. On the contrary,
in the Liver Toxicity data, an asymmetric (regression-based) analysis was performed as we attempt to

predict the clinical parameters Y with the gene expression matrix X (as was also performed in [22]).

For both data sets, we arbitrarily chose to select 50 variables on each dimension. This can be justified by
the illustrative purpose of this section, as well as the need to select a sufficient number of variables in order
to assess their biological relevance with a Gene Ontology (GO) analysis. Regarding the choice of the
number of dimensions, we chose to keep the first 3 dimensions in Nutrimouse, as was suggested by [1]. In
the Liver Toxicity study, [7] showed that 3 dimensions seemed to be sufficient to explain most of the
correlation or the covariance structure of the data. Therefore, the similarity matrices were computed on

the basis of the selected variables on the first 3 components in both data sets.

To highlight the strongest variable associations only, variables with an association score greater than 0.6 in
absolute value were chosen to infer the Relevance Networks. This threshold was arbitrarily chosen in order
to obtain biologically interpretable networks that were neither too sparse nor too dense. The obtained
networks were then used as an input to Cytoscape [23] for visualization and GeneGo [24] and topGO [25,26]
were used to assess the biological relevancy of the inferred associations between the different types of
variables (see Additional File 2 for the R script used). This analysis is similar to the one performed by [27]
who assessed the results of RCCA in a metabolic syndrome study. We then compared the obtained inferred

networks to known biological networks through data driven and knowledge driven biological analyses.



Figure 4: Relevance networks from Nutrimouse data. Relevance networks generated with Cytoscape
based on the output from network function in the mixOmics package. Red and green edges indicate positive
and negative correlation respectively.

Application to Nutrimouse data.

The Relevance Network generated for the Nutrimouse data at a threshold 0.6 highlighted two clusters of
fatty acids, and three clusters of genes (Fig. 4). Considering first the fatty acids, the yellow cluster on the
left-hand side contained all the w6 fatty acids from the data set (C18:2w6, C20:2w6, C20:4w6, C20:3w6,
C22:5w6, and C22:4w6). The second group of fatty acids consisted of those in the w9, w7, and saturated
fatty acid groups, along with the two w3 fatty acids included in the data set. These clusters made sense in
the context of lipid biosynthetic pathways — one biosynthetic pathway leads to the production of w6 lipids,
while the w9, w7 and saturated lipids are the product of an alternative lipid biosynthetic pathway (orange
nodes). The w3 group was the exception in our analysis — it was generated by a pathway related to the w6
pathway (yellow nodes), but based on the connectivity in our network, these fatty acids partitionned with

the w7, w9 and saturated fatty acid group [28].

The three gene sets defined by network topology were: (1) a set of genes that were negatively correlated
with only the w6 lipid group; (2) a set of genes that were negatively correlated with the w6 group, but

largely positively correlated with the other lipid group; and (3) a gene set that was only associated with
the second lipid group, with positive correlations to the w3, w7, w9, and saturated fatty acids C14:0 and

C16:0, but negatively correlated with the C18:0.

The w6 group showed only negative correlations with genes selected by SPLS-can. This was consistent with

the observations made by [20] that feeding mice a diet rich in w6 fatty acids lead to the down regulation of



several genes on the array.

The second group of genes contained many targets of PPAR«, a nuclear receptor transcription factor
associated with the high-level regulation lipid metabolism (dark blue nodes). PPAR« targets are expected
to be associated with long-chain polyunsaturated fatty acids from the w3 family, while the final subset of
genes involved in lipid biosynthesis is expected to be closely associated with the saturated and
monosaturated fatty acids of the w7 and w9 families. Both of these associations were apparent in the
network. An in-depth analysis of the Nutrimouse data is behind the scope of this article. The reader can
refer to [20, 28] for more details about the underlying biological interpretation.
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Figure 5: Relevance networks from Liver Toxicity data. Relevance networks generated with Cytoscape
based on the output from network function in the mixOmics package. Red and green edges indicate positive
and negative correlation respectively.

Application to Liver Toxicity data.

Visualization of the extracted genes with Cytoscape. Relevance networks for the Liver Toxicity data were
generated from the results obtained with the SPLS-reg method. The selected variables with a pair-wise
association score greater than 0.6 in absolute value were used as an input to Cytoscape (Fig. 5). This
network contained three clusters of clinical chemistry measurements and four clusters of genes. Considering
first the chemistry measurements (grey nodes), cluster 1 and 2 only consisted of cholesterol [CHOLE] and

albumin [ALB] levels respectively. The third cluster contained indicators of liver injury (Alanine
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Aminotransferase [ALT] and Aspartate aminotransferase [AST]), indication of renal injury (urea nitrogen

[BUN]), and assessment of cholestasis — bile flow interruption (total bile acids [TBA]).

The four gene clusters defined by network topology (Fig. 5) were: (1) a set of genes that were positively
correlated with the cholesterol levels but negatively correlated with the third cluster of clinical chemistry
measurements (dark brown nodes); (2) a set of genes that were negatively correlated with ALB levels only
(brown nodes); (3) a set of genes largely positively correlated with the third cluster of chemistry
measurements but negatively correlated with the cholesterol levels (orange nodes); and (4) a gene set with

only positive correlations to the third cluster of chemistry measurements (yellow nodes).

Biological relevance of the extracted genes. Hierarchical clustering (heatmap) of the biological samples on
the extracted genes is displayed in Figure 6. This clustering reveals a very good grouping of the rats that
underwent different doses of acetaminophen (also found in [21]). Clusters labelled (coloured at the top of
the heatmap) with either no (violet), moderate (cyan) or severe (magenta) necrosis of the centrilobular
region of the rat liver was obtained by using the expression values of the genes extracted from the network.
Levels of the clinical chemistry measurements on each group of samples are given in Additional File 3.
Figure 6 also highlights the differences in gene expression profiles between each gene cluster (coloured in
dark brown, brown, orange and yellow at the left side of the heatmap). Gene expression differences are

clearly observed between the clusters.

The extracted genes were uploaded into topGO [25,26]. A Gene Ontology (GO) enrichment analysis from
the gene list was then performed. GO terms significantly enriched include biological processes related to
nitric oxide metabolism and cellular stress responses, including responses to unfolded proteins. The top
GO molecular functions enriched in the gene set relate to protein binding, nucleotide binding, and enzyme
activity (eg. hydrolase, phosphatase, decarboxylase). Cellular component GO terms enriched in the set
mostly relate to very general locations, however both an endopeptidase complex and the peroxisome are
also present in the list, reinforcing the association of the selected gene products with proteolysis and the

response to stress and unfolded proteins.

The individual gene clusters in the SPLS-reg network (Fig. 5) may also be examined for GO enrichment,
as we have done for the larger cluster 4. For example, while examining the biological process terms

associated this cluster, we saw an enrichment for processes involving xenobiotic transport, and interesting
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Figure 6: Liver Toxicity heatmap. Hierarchical clustering of the biological samples using the extracted
genes from SPLS-reg network. Agglomerative hierarchical clustering was derived using the Euclidean distance
as the similarity measure and the Ward methodology. The resulting heatmap contains the genes as the rows
and samples as the columns. Red colour indicates up regulation, green down regulation and black indicates
no change. On the top of the heatmap, clusters of the biological samples are coloured in violet, cyan and
magenta for no, moderate or severe necrosis respectively. On the left-hand side of the heatmap, gene clusters
are displayed (dark brown, brown, yellow and orange).

functional enrichments such as positive regulation of mesenchymal cell proliferation, a process that was
previously observed to occur in other tissues in response to epithelial damage signalling to the underlying
mesenchyme to initiate proliferation and tissue remodelling [29], and negative regulation of CREB
transcription factor activity, interesting due to the previous association of CREB transcription factor with

responses to cytotoxic stress [30,31], particularly in renal tubular cells [32].

Analysis of the gene list using the GeneGo [24] network analysis algorithm identified a total of 14 networks
with a significant enrichment of genes in the Relevance Network. The top five networks were (i) regulation
of programmed cell death in response to stress; (ii) cell cycle and regulation of metabolism; (iii) cholesterol
and sterol metabolism; (iv) regulation of programmed cell death in response to organic substances; (v)

response to stress and presentation of endogenous antigens. A summary of these networks can be found in

Additional file 4.



Conclusions

Several methodologies have been recently improved to jointly analyse two data sets. Therefore, the
developments or the improvements of graphical tools are now crucial to better visualise and understand
such complex biological data. In the omics era in particular, the deluge of data can make the interpretation
of the results extremely difficult. In this paper, we proposed two types of graphical displays to complement
the graphics usually used in CCA and PLS related methods. Both CIM and Relevance Networks
representations are based on the evaluation of a pair-wise similarity measure. These graphical outputs are
implemented in the R package mixOmics that is freely available; their biological relevancy was further
assessed using GO analysis. The results obtained on simulated and real data sets illustrated very well the
usefulness of these graphical outputs to further explore the relationships between two omics data sets. The
thorough biological interpretation of the obtained inferred networks also demonstrated the relevancy of the

approach.

Methods

We consider two approaches for visualizing correlation structures between two data sets: CIM and
Relevance Networks. Both graphical displays require an estimated largescale association or pair-wise
similarity matrix M as an input. Previously, several similarity measures have been proposed, including
Pearson correlation coefficient [13,33-35], entropy and mutual information [36]. We propose instead to
compute the pair-wise similarity matrix using the results of either PLS or CCA approaches.

This section is organized as follows: we first give the user some background about the PLS and CCA
methodologies and associated variants recently developped for the highly dimensional case, we then
describe how to compute the pair-wise similarity matrix based on the results obtained via these integrative

approaches in order to construct Relevance Networks and CIM.

Background: CCA and PLS based methods
Notations

We focus on two-block data matrices denoted X (n x p) and Y (n x q) where the p variables X7 and ¢
variables Y* are of two types and are measured on the same samples or observations n. Throughout the
article, we will adopt the following notations: M ,g represents the element of the kth row and jth column of

the matrix M.
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CCA

CCA [37] looks for the largest correlation between a linear combination of the variables in the first set X
and a linear combination of the variables in the second set Y. The first pair maximizes the correlation

p1 = cor(Xa',Yb') subject to var(Xa') = var(Y'b') = 1. The subsequent pairs (Xa!,Yb'),
(I=1,...,min(p,q)) maximize the residual correlation with the additional requirements that each pair is
to be uncorrelated with the previous pairs. In the following, we will refer to o' and b* as the canonical
loadings (or weights). The resulting variables U' = Xa! and V! = Yb! are called the canonical variates and

p1 are known as the canonical correlations.

PLS

PLS [38] looks for a decomposition of centered (possibly standardized) matrices X and Y. The
decomposition is performed using orthogonal scores, also called latent variables or variates, (U*,...,U?)
and (V1,...V?*) that are n-dimensional vectors and associated loadings, (a',...,a*) and (b',... b*) that
are p and ¢- dimensional vectors respectively; s is the number of chosen dimensions or components of PLS.
The vectors (UY,...,U®) and (a',...,a®) are associated to the X data set, and the vectors (V! ...V*) and
(b1, ...,b%) are associated to the Y data set. The optimization problem to solve is [39]:

max g, pn.cov(X_qya’, Yb') subject to [lal]] = ||b"]] = 1, where X(;_1) is the residual (deflated) X matrix for

each PLS dimension [.

Many PLS algorithms exist, not only for different shapes of data (SIMPLS [40], PLS1 and PLS2 [3§],
PLS-SVD [41]) but also for different aims (predictive like PLS2, or modelling like PLS-mode A,

see [2,12,42]). In the present paper, we will refer to a PLS approach with two different aims. PLS-reg (for
PLS-regression mode) will be used when one wants to model a an ‘asymmetric’ or uni-directional
relationship between the two data sets, i.e. we want to predict the matrix Y with the data X. PLS-can
(for PLS-canonical mode) uses a different deflation step to relate the two data sets in a ‘symmetric’ way

and therefore models a bi-directional relationship. This is a similar purpose to CCA’s.

Regularized and sparse based methods
In classical CCA and PLS analysis, all variables from both sets are included in the fitted linear
combinations or variates. However, in the context of high throughput biological data, the number of

variables often exceeds tens of thousands. In this case, linear combinations of the entire set of features

14



make biological interpretability difficult as they contain too many variables to perform further tests or to
generate biological hypotheses. Most importantly, the high dimensionality and the insufficient sample size

lead to computational problems as CCA requires the computation of the inverse of matrices X’X and Y'Y

RCCA. To circumvent this problem, [1] developed a regularized (or ridge) extension of CCA (RCCA).

RCCA solves the instability of the loadings due to multicollinearity by adding a regularization term on the
diagonal of the ill-conditionned matrices, i.e. the covariance matrices. Thus, highly correlated variables get
similar loadings, resulting in a grouping effect. The regularization terms A\; and A, associated to each data

set are chosen by cross-validation in order to maximize the first canonical correlation.

SPLS. Several sparse PLS have been proposed in the literature to select variables [6,7]. These approaches
introduce Iy (Lasso) penalization terms on the loading vectors to shrink some of the coefficients towards
zero, thus allowing for simultaneous variables selection in the two data sets. The sparse PLS therefore
solves the problem of interpretability by selecting variables from both sets and therefore providing sparse
sets of associated variables. In the article, we consider the sparse PLS proposed by [7] since both regression
(SPLS-reg) and canonical mode (SPLS-can, [4]) are available. For practical purposes, the two penalization
parameters associated to each data set were replaced by the number of variable to select on each data set

and on each SPLS dimension. More details about the tuning of these parameters can be found in [7].

Both RCCA and SPLS are implemented in mixOmics. These approaches require to choose the number of

dimensions s and the regularization/penalization parameters associated to X and Y.

Pair-wise variable associations for CCA

The association measure that we propose to use is analogous to a correlation coefficient. Firstly, similar to
a correlation circle output, the X7 and Y* variables are projected onto a low dimensional space. Let

s < min(p, q) the selected dimensions to adequately account for the data association, and let Z! = U’ 4 V!
the equiangular vector between the canonical variates U' and V! (I =1,...,s). The coordinates of the
variable X7 and Y* are obtained by projecting them on the axes defined by Z!. The projection on the Z
axes seems the most natural as X and Y are symmetrically analysed in CCA. Furthermore, Saporta [11]

showed that the Z variables have the property to be the closest to X and Y, i.e. the sum of their squared
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multiple correlation coefficients with X and with Y is maximal.

Let 7 = (h{, ..., h3) and ¢gF = (g¥, ..., g")" the coordinates of the variable X7 and Y* respectively on the
axes defined by Z',..., Z°. These coordinates are obtained by computing the scalar innerproduct

h{ = <Xj, Zl> and gl’“ = <Y’“, Zl> (I=1,...,s). As the variables X7 and Y* are assumed to be of unit
variance, the innerproduct is equal to the correlation between the variables X (or V) and Z:

h{ = (;or()(j7 Zl) and glk = COI‘(Yk, Zl)'
Then, for any two variables X7 and Y*, a similarity score can be computed as follows:
M} = (1, 6) = 109 ], 19", cos 0(A, ") thgzv M

where 6(h7, g*) is the angle between the vectors h7 and g¥, and 0 < |[M}| < 1. The matrix M can be
factorized as M = GH' with G and H matrices of order (p x s) and (g x s) respectively. When s = 2, M is
represented in the correlation circle by plotting the rows of G and the rows of H as vectors in a
2-dimensional Cartesian coordinate system. Therefore, the innerproduct of the X7 and Y* coordinates is

an approximation of their association score.

Pair-wise variable associations for PLS
For PLS-reg, the association score M ,g between the variables X7 and Y* can be obtained from an

approximation of their correlation coefficient. Let r the rank of the matrix X, PLS-reg allows for the

decomposition of X and Y by [43]:

X =UN¢Y) +U¢*) +---+U"(¢") (2)
Y =U'e) + U@ +- -+ U (") + B (3)
where ¢! and ¢!, are the regression coefficients on the variates U',...,U”, and E(") is the residual matrix

(I=1,...,7). By denoting u; the standard deviation of U!, using the orthogonal properties of the variates
and the decompositions in (2) and (3), we obtain h} = cor(X7, U') = w ¢ and gf = cor(Y*,U') = wyp),.
Let s < r the number of components selected to adequately account for the variable association, then for

any two variables X7 and Y*, the similarity score is defined by:

M = (W, g") Zh g = Zuz ¢l ¢}, == cor(X7,Y"), (4)
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where 7 = (h,... hi)" and g¥ = (g%, ..., g*)" are the coordinates of the variable X7 and Y* respectively
on the axes defined by U',...,U®. When s = 2, a correlation circle representation is obtained by plotting

h7 and g* as points in a 2-dimensional Cartesian coordinate system.

For PLS-can, the association score M,g is calculated by substituting gf = cor(Y*, V1) in (4) for I =1,...,s,

as in this case the decomposition of Y is given by:
Y=V + VA 4+ V(") + BV
where ! (I =1,...,r), are the regression coefficients on the variates V!,...,V". Then,
cor(X7,Y*) ~ iu%a?d)ggpk =M
=1

where ‘712 is the variance of V!.

Constructing Relevance Networks

A conceptually simple approach for modelling net-like correlation structures between two data sets is to
use Relevance Networks. This concept was introduced by Butte et al. [33] as a tool to study associations
between couples of variables coming from several types of genomic data. This method generates a graph
where nodes represent variables, and edges represent variable associations. The Relevance Network is built
in the following simple manner. First, the correlation matrix is inferred from the data. Second, for every
estimated correlation coefficients exceeding a prespecified threshold between two variables (say 0.6 in our

examples), an edge is drawn between these two variables.

The construction of biological networks (gene-gene, protein-protein, etc.) with direct interactions within a
variable set is of considerable interest amongst biologists, and has been extensively used in the literature.
Therefore, we will not consider this case and rather focus on the representation between X and Y data
sets, i.e., the representation of variables of two different types. We will thus display RCCA, SPLS-can and
SPLS-reg Relevance Networks through the use of bipartite graph (or bigraph), that is, every node of one

variable set X is connected to nodes of the other variables set Y only.

Bipartite networks are inferred using the pair-wise association matrix M defined in (1) and (4) for CCA
and (S)PLS results respectively. Entry M,ﬂ in the matrix M represent the association score between X7

and Y* variables. Then, by setting a user-defined score threshold, the pairs of variables X7 and Y* with a
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| M ,g\ value greater than the threshold will be aggregated in the Relevance Network. By changing this
threshold, the user can choose to include or exclude relationships in the Relevance Network. This option is

proposed in an interactive manner in the mixOmics package [18].

Relevance networks for RCCA assume that the underlying network is fully connected, i.e. that there is an
edge between any pair of X and Y variables. For SPLS-reg and SPLS-can, relevance networks are solely
represented for the variables selected in the model. In this case, M i pair-wise associations are calculated

based on the selected variables.

Displaying CIM

CIM or heatmaps were introduced in [13,14] to represent data resulting from gene expression profiles. This
type of representation is based on a hierarchical clustering simultaneously operating on the rows and
columns of a real-valued similarity matrix M. The initial matrix is graphically represented as a
2-dimensional coloured image, where each entry of the matrix is coloured on the basis of its value, and
where the rows and columns are reordered according to a hierarchical clustering. Dendrograms resulting of
the clustering are added to the left (or right) side and to the top (or bottom) of the image. With RCCA,
SPLS-can and SPLS-reg, we chose to display CIM based on the pair-wise similarity matrix M defined in
(1) and in (4).
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Additional Files

Additional File 1 Covariance matrices for the simulated data.

Supplemental_materials_1.pdf is a pdf file to be viewed with Adobe Acrobat.

Additional File 2 R script to generate the Relevance Networks for the Nutrimouse and Liver Toxicity
data.

Supplemental_materials_2.pdf is a pdf file to be viewed with Adobe Acrobat.

Additional File 3 Levels of the clinical chemistry measurements for each group of samples from the
hierarchical clustering.

Supplemental _materials_3.pdf is a pdf file to be viewed with Adobe Acrobat.

Additional file 4 Summary of the 14 networks identified with GeneGo from Liver Toxicity.

Supplemental_materials_4.xls is a xIs file to be viewed with Microsoft Excel or Open Office Calc.
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