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A close interaction between statisticians, bioinformaticians
and molecular biologists is essential to provide meaningful
results

Large quantity of data from
multiple and heterogeneous sources

Computational issues

Biological interpretation for
validation

Keep pace with new technologies

Multi-disciplinary field
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Systems biology and challenges

Reductionism:
1 gene = 1 hypothesis = 1 statistical test

⇓
Holism:
Thousands of molecules = ??

New ways of thinking
Well stated biological question is crucial
Need cutting-edge methods to harness
the potential of biological data

 postulate novel biological hypotheses to be validated in the lab
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Research aim and hypothesis
Shift the univariate statistics paradigm to obtain deeper insight into
biological systems

Molecular entities act together to trigger cells’ responses
and need to be appropriately identified with novel multivariate
statistical methods.
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Research aim and hypothesis
Shift the univariate statistics paradigm to obtain deeper insight into
biological systems

Molecular entities act together to trigger cells’ responses
and need to be appropriately identified with novel multivariate
statistical methods.

“Essentially, all models are wrong, but some are useful.”

George EP. Box, statistician
1919 - 2013
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A linear combination of variables

Linear multivariate methods

Linear multivariate methods use components that aggregate
observable variables (e.g. genes, transcripts, proteins) in a model to
summarise sources of variation in the data.

Reduce data dimension
Handle highly correlated, noisy, missing variables
Capture experimental and biological variation

Example of multivariate methods:
Principal Component Analysis (PCA), Projection to Latent
Structures (PLS) models
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A linear combination of variables

A multivariate model

Assign a score to each individual, based on a linear combination of
variables (e.g. genes):

score of Bob = a1 ∗ geneBob1 +a2 ∗ geneBob2 + . . .+aP ∗ geneBobP

score of Jane = a1 ∗ geneJane1 +a2 ∗ geneJane2 + . . .+aP ∗ geneJaneP

... =
...

• What we know: the gene expression levels value for each
individual
• What we don’t know: the weights a1, a2, . . . , aP assigned the
genes (the same weight aj is assigned to the same gene j across the
whole cohort)
→ statistical optimisation procedure
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Dimension reduction and visualisation

Data dimension reduction via components

The expression levels of P genes for each individual are summarised
into one score value:

score of Bob = a1 ∗ geneBob1 +a2 ∗ geneBob2 + . . .+aP ∗ geneBobP

Each score value corresponds to a component score value
As one component may not be enough to summarise the data
we sometimes use several components (several linear
combinations)
As we summarise P data points into a few component scores,
we project the data into a smaller subspace (‘multivariate
projection-based’ methods)
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Dimension reduction and visualisation

Components for data visualisation
Principal Component Analysis: visualisation of 63 samples x 2,300
genes

Principal Component Analysis
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Unsupervised (exploratory) analysis: samples with similar gene
expression values cluster together
→ no apriori on the samples group membership
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Dimension reduction and visualisation

Components for data visualisation
Discriminant Analysis: visualisation of 63 samples x 2,300 genes
according to their tumour subtype

Discriminant Analysis
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Supervised analysis: samples cluster according to their group
→ the aim is to separate sample groups
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Flexibility

Different types of methods for different biological questions

Unsupervised analysis

Principal Component Analysis
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individuals’ scores ' a1 ∗ gene1 + a2 ∗ gene2 + · · ·+ aP ∗ geneP
PCA maximises the variance of each component

Supervised analysis

Discriminant Analysis
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phenotype category ' a1 ∗ gene1 + a2 ∗ gene2 + · · ·+ aP ∗ geneP
PLS Discriminant analysis (PLS-DA) maximises the covariance
between each component and the phenotype

Sparse method
phenotype category ' 0 ∗ gene1 + 0 ∗ gene2 + · · ·+ aP ∗ geneP
 only a few genes are included in model and are selected
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Flexibility
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Flexibility

Multivariate methods are highly flexible

One ‘omics data set
e.g. transcriptomics only

Multiple ‘omics data
sets
e.g. integrate transcrip-
tomics, proteomics, miRNA

Data exploration, data mining, & visualisation

Unsupervised
(No response provided)

Select a subset of correlated variables

Supervised classification
(Categorical response)

Select a subset of discriminative variables

→ My main research focus is to mine data and to identify a subset
of diagnostic or prognostic biomarkers that are assessed in
combination.
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Flexibility

Univariate and multivariate statistics are complementary

Univariate (e.g. T-test/linear
model)

Multivariate (e.g. PLS-DA)

• Data distribution assumption • No data distribution required
• Test one biomarker at a time • Assess all biomarkers in combination
• Output a p-value per biomarker • No p-value, unless permutations
• No visualisation • Visualisation (samples, variables)

based on the components
• Adjust for covariates • Does not adjust for covariates (in

progress)
• No prediction if P > N (linear
model)

• Prediction of a phenoype for a new
sample

Sparse multivariate methods identify a small subset of biomarker
candidates to suggest new biological hypotheses and make
downstream univariate analysis amenable.
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mixOmics

Open-source and user-friendly tools

The R toolkit (since 2009)

French’Oz team:
4 core, 1 developer, students, collaborators

Today: 17 novel multivariate methods

21K downloads in 2016

14 multi-day workshops since 2014 (FR, AUS, NZ)

Our research program focuses on the development of multivariate
statistical methodologies, their applications in areas informed by
biology, and the training of the new generation of computational
biologists. www.mixOmics.org
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mixOmics

‘omics data analysis with mixOmics
…		

…
		

IN
PU

T
M
UL
TI
VA

RI
AT
E	

M
ET
HO

D
GR

AP
HI
CS

PCA*

PLS-DA*

rCCA

PLS*

IPCA* DIABLO* MINT*

*	variable	selectionsupervised method

Sa
m
pl
e	

pl
ot
s

Va
ria

bl
e	

pl
ot
s

 Visualisations based on components and selected biomarkers
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mixOmics

Multivariate projection-based methods
(take-home message)

Assess variables in combination
Reduce data dimension via components (linear combinations
of original variables)
Data visualisation based on the components
Flexible models, well-suited for ‘difficult’ data and first steps
for biomarker discovery
Complement univariate statistical models
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Mathematical aspects

PCA is a matrix decomposition technique

Solved with Singular Value Decomposition :
X = U∆AT

Singular vectors:

T = U∆, T contains the PCs th

A contains the loading vectors ah

Singular values:

∆ diagonal matrix with
√
δh

h = 1..H is the number of PCs

The variance of the first principal component t1 is the largest (= δ1).
The eigenvalues δh decrease and correspond to the explained variance per
component.
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A fishy example

Summarize a fish
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A fishy example

Summarize a fish

PCA:
First component maximises
the variance
Second component
maximises the remaining
variance

Acknowledgements: B Gautier for plotting a fish in R!
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A fishy example

Parameters in PCA

How many principal components to summarize most of the
information?
There are as many components as the rank of the matrix X

Screeplot of eigenvalues: any elbow?
Sample plot: makes sense?
Cumulative proportion of explained
variance
Some stat tests to estimate the ‘intrinsic’
dimension, but limitations when n << p

Cumulative proportion of explained variance for the first 8 principal components:
PC1 PC1 to 2 PC1 to 3 PC1 to 4 PC1 to 5 PC1 to 6 PC1 to 7 PC1 to 8
0.59 0.75 0.84 0.93 0.946 0.956 0.961 0.966
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PCA is a visualisation tool

Sample plot plots two components to visualise similarities
between samples
Correlation circle plots∗ to visualise the cross-correlations
between variables
Biplot to relate samples and variables in the same plot.

∗More details about CC plots: González, I., Lê Cao, K.-A., et al. (2012). Visualising
associations between paired ‘omics data sets. BioData mining, 5(1), 19.
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Yeast metabolomics

Example: yeast metabolomics

Yeast study from Villas-Boâs et al, 2005:
Two Saccharomyces Cerevisiae strains: WT and MT
Two environmental conditions: aerobic (AER), anaerobic
(ANA)
37 metabolites and 55 samples
(13 MT-AER, 14 MT-ANA, 15 WT-AER, 13 WT-ANA)

Question:
What is the strongest source of variation in the metabolomics
data: strain or environment? something else?

Kim-Anh Lê Cao June 19 2017
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Yeast metabolomics

Number of components and sample plot
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Yeast metabolomics

Biplot: variables and samples plot
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Summary

PCA summary

PCA is a matrix decomposition technique for dimension
reduction.

Perform a PCA first to understand the major sources of
variation in your data.

Always report the % explained variance per component.

PCA can highlight ‘batch effect’ in the data and can be used
to check that batch-effect removal techniques are efficient.
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Summary

When PCA may fail
When the biological question may not be related to the
highest variance in the data
→ Independent Component Analysis (ICA) or variants.

When there are too many noisy variables that contribute to
the variance
→ sparse PCA but need to specify # variables to select.

When there are too many missing values
→ Algorithm variant NIPALS

When samples are not independent (e.g. time course data,
repeated measures) do not use PCA as subject variation > the
time variation
→ multilevel approach for multivariate analysis
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Single ‘omics supervised analysis with sPLS-DA:
- identify biomarkers to discriminate phenotype groups
- predict the phenotype of an external sample

Input: an expression data and a phenotype group

Applications: any single ‘omics data, in particular proteomics,
metabolomics data, and microbiome
Some examples for 2 data sets integration:

Perspectives in Plant Ecology, Evolution and Systematics 21 (2016) 41–54

Contents lists available at ScienceDirect

Perspectives  in  Plant  Ecology,  Evolution  and  Systematics

j o ur nal ho me  page: www.elsev ier .com/ locate /ppees

Research  article

Topsoil  depth  substantially  influences  the  responses  to  drought  of  the
foliar  metabolomes  of  Mediterranean  forests

Albert  Rivas-Ubacha,b,c,∗, Adrià  Barbetab,c,  Jordi  Sardansb,c, Alex  Guentherd,
Romà  Ogayab,c,  Michal  Oravece,  Otmar  Urbane,  Josep  Peñuelasb,c

a Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA,  99354, USA
b CREAF, Global Ecology Unit CRAF-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain
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Keywords:
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Soil depth
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Quercus ilex

a  b  s  t  r  a  c  t

The  upper  soil  provides  support,  water,  and  nutrients  to  terrestrial  plants  and  is  therefore  crucial  for
forest  dynamics.  We  hypothesised  that  a tree’s  metabolic  activity  (and  therefore  its metabolome;  the
total set  of metabolites)  would  be  affected  by  both  the  depth  of upper  soil  layers  and  water  availability.
We  sampled  leaves  for stoichiometric  and  metabolomic  analyses  once  per season  from  differently  sized
Quercus ilex  trees  under  natural  and  experimental  drought  conditions  representing  the  likely  conditions
in the  coming  decades).  Although  the  metabolomes  varied  according  to  tree size,  smaller  trees  did not
show higher  concentrations  of biomarker  metabolites  related  to  drought  stress.  However,  the  effect  of
the drought  treatment  on  the metabolomes  was  greatest  for small  trees  growing  in shallow  soils.  Our
results  suggest  that  tree  size  is more  dependent  on the  depth  of  the  upper  soil,  which  indirectly  affects  a
tree’s  metabolome,  rather  than  on  the moisture  content  in  the  upper  soil.  Metabolomic  profiling  of  Q.  ilex
supports  our finding  that  water  availability  in  the  upper  soil  is not  necessarily  correlated  with  tree  size.
The  higher  impact  of  drought  on  trees  growing  in  shallower  soils  nevertheless  indicates  that  any  increase
in  the  frequency,  intensity,  and  duration  of  drought  −  as has  been  projected  for  the Mediterranean  Basin
and  other areas  − would  affect  small  trees  most.  Metabolomics  has  proved  to  be a  useful  means  for
investigating  the  links  between  plant  metabolism  and  environmental  conditions.

Published by Elsevier  GmbH.

1. Introduction

Soil provides a physical support system and a reservoir of water
for terrestrial primary producers (Montheith, 1981). A scarcity of
soil resources, particularly water, is often associated with restricted
development of plant-soil systems and reduced biomass (Huxman
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Single ‘omics supervised analysis with sPLS-DA:
- identify biomarkers to discriminate phenotype groups
- predict the phenotype of an external sample

Input: an expression data and a phenotype group

Applications: any single ‘omics data, in particular proteomics,
metabolomics data, and microbiome
Some examples for 2 data sets integration:
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The  upper  soil  provides  support,  water,  and  nutrients  to  terrestrial  plants  and  is  therefore  crucial  for
forest  dynamics.  We  hypothesised  that  a tree’s  metabolic  activity  (and  therefore  its metabolome;  the
total set  of metabolites)  would  be  affected  by  both  the  depth  of upper  soil  layers  and  water  availability.
We  sampled  leaves  for stoichiometric  and  metabolomic  analyses  once  per season  from  differently  sized
Quercus ilex  trees  under  natural  and  experimental  drought  conditions  representing  the  likely  conditions
in the  coming  decades).  Although  the  metabolomes  varied  according  to  tree size,  smaller  trees  did not
show higher  concentrations  of biomarker  metabolites  related  to  drought  stress.  However,  the  effect  of
the drought  treatment  on  the metabolomes  was  greatest  for small  trees  growing  in shallow  soils.  Our
results  suggest  that  tree  size  is more  dependent  on the  depth  of  the  upper  soil,  which  indirectly  affects  a
tree’s  metabolome,  rather  than  on  the moisture  content  in  the  upper  soil.  Metabolomic  profiling  of  Q.  ilex
supports  our finding  that  water  availability  in  the  upper  soil  is not  necessarily  correlated  with  tree  size.
The  higher  impact  of  drought  on  trees  growing  in  shallower  soils  nevertheless  indicates  that  any  increase
in  the  frequency,  intensity,  and  duration  of  drought  −  as has  been  projected  for  the Mediterranean  Basin
and  other areas  − would  affect  small  trees  most.  Metabolomics  has  proved  to  be a  useful  means  for
investigating  the  links  between  plant  metabolism  and  environmental  conditions.
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A fishy example, again

Summarize a fish
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A fishy example, again

Summarize a fish

PLSDA:
First component maximises
the differences between
colors (outcome)
Second component
maximises the variance
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Mathematical aspects

PLS Discriminant Analysis matrix decomposition

PLS-DA maximises the covariance
between components and the outcome
(phenotype groups)

sparse PLS-DA selects the most
discriminative variables (with LASSO
penalisations)

Predictive model: based on the linear
combination of variables, predict the
phenotype group of a new sample.

Lê Cao K-A., et al. (2011). Sparse PLS Discriminant Analysis: biologically relevant feature selection
and graphical displays for multiclass problems, BMC Bioinformatics, 12:253.
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Mathematical aspects

Parameters in sparse PLS-DA

The number of PLS
components
The number of variables to
select on each component
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→ we use repeated cross-validation and choose the parameters that
achieve the lowest classification error rate.
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Oesophageal cancer proteomics

Oesophageal cancer proteomics study
with Alok Shah, Benoît Gautier & Michelle Hill (UQ)

Proteomics targeted assay (129 proteins) including 20 Barrett’s
oesophagus benign (BE) or 20 oesophageal (EAC) adenocarcinoma
cancer samples.

Aim: develop blood tests for detection and personalised treatment

Statistical challenges:
Small cohort (40 samples)
Data range and variability with proteomics data
Classical univariate statistical methods failed

Hill M, Shah AK, Lê Cao K-A (2014). Blood Test for Throat Cancer. WO/2016/077881. Priority
17/11/2015
Shah AK, et al. (2015) Serum glycoprotein biomarker discovery and qualification pipeline reveals novel
diagnostic biomarkers for oesophageal adenocarcinoma. Mol Cell Prot 14(11).
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Oesophageal cancer proteomics

sPLSDA: a signature of 11 proteins
Discovery cohort:
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Summary

PLSDA summary

PLSDA is a supervised method that aims to discriminate
sample phenotype groups
Suitable for biomarker discovery when seeking for a molecular
signature
Results validation in external cohorts or using repeating
cross-validation on the training data set.
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Outline

1 context

2 multivariate analysis

3 PCA: the basics

4 single ‘omics analysis

5 multi ‘omics integration
DIABLO
Breast cancer study
Asthma study
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DIABLO

Multiple ‘omics integration and supervised analysis:
- identify a multi ‘omics signature that explain a phenotype
- seek for maximal correlation between molecular features of
different types to obtain greater biological insights

Input: several ‘omics expression datasets matching the same
samples, and phenotype/disease status information

Applications: 2 ‘omics, microbiome-environmental variables
integration
Some examples:

genes
G C A T

T A C G

G C A T
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Integrative miRNA-Gene Expression Analysis
Enables Refinement of Associated Biology and
Prediction of Response to Cetuximab in Head and
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Abstract: This paper documents the process by which we, through gene and miRNA expression
profiling of the same samples of head and neck squamous cell carcinomas (HNSCC) and an integrative
miRNA-mRNA expression analysis, were able to identify candidate biomarkers of progression-free
survival (PFS) in patients treated with cetuximab-based approaches. Through sparse partial least
square–discriminant analysis (sPLS-DA) and supervised analysis, 36 miRNAs were identified
in two components that clearly separated long- and short-PFS patients. Gene set enrichment
analysis identified a significant correlation between the miRNA first-component and EGFR signaling,
keratinocyte differentiation, and p53. Another significant correlation was identified between the
second component and RAS, NOTCH, immune/inflammatory response, epithelial–mesenchymal
transition (EMT), and angiogenesis pathways. Regularized canonical correlation analysis of sPLS-DA
miRNA and gene data combined with the MAGIA2 web-tool highlighted 16 miRNAs and 84 genes
that were interconnected in a total of 245 interactions. After feature selection by a smoothed t-statistic
support vector machine, we identified three miRNAs and five genes in the miRNA-gene network
whose expression result was the most relevant in predicting PFS (Area Under the Curve, AUC = 0.992).
Overall, using a well-defined clinical setting and up-to-date bioinformatics tools, we are able to give
the proof of principle that an integrative miRNA-mRNA expression could greatly contribute to the
refinement of the biology behind a predictive model.

Keywords: miRNA; microarray; head and neck squamous cell carcinomas (HNSCC); cetuximab;
drug sensitivity

1. Introduction

Head and neck cancers develop in the mucosal linings of the upper aerodigestive tract and
over 90% are squamous cell carcinomas (HNSCC). The disease is diagnosed in advanced stages
(stage III and IV) in the majority of patients and their treatment usually requires surgery, radiation
therapy, or chemotherapy in different combinations [1]. However, 27%–50% of cases relapse within
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- seek for maximal correlation between molecular features of
different types to obtain greater biological insights
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DIABLO

Multi-‘omics data integration frameworks for supervised analysis
Amrit Singh (UBC), Florian Rohart (UQ)

Concatenation: fit a supervised model
on concatenated data
Ensemble: fit a supervised model on
each ‘omics dataset, then aggregate the
results
DIABLO: maximise the covariance
between specific ‘omics datasets and the
phenotype group

Singh A, Gautier B, Shannon C, Vacher M, Rohart F, Tebbutt S, Lê Cao K-A. DIABLO - an integrative,
multi-omics, multivariate method for multi-group classification. bioRxiv 067611
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DIABLO

Maximize the sum of covariances between two components
at a time

PLSDA:

DIABLO:
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DIABLO

Maximize the sum of covariances between two components
at a time

PLSDA:
DIABLO:
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DIABLO

Maximise the covariance between specific ‘omics datasets
and the phenotype group

C matrix design ‘links’ datasets (link == maximise the covariance btw 2
data sets).

X1#

X5#

X3#

X4#

X2#
Y

is coded in R as

Choose C based on prior knowledge or data-driven preliminary
exploratory analyses.
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DIABLO

Parameters in DIABLO

The design C : what is the biological question?

The number of components (K-1, with K number of classes)

Number of variables to select on each component and for each
data set.

intensive cross-validation or
arbitrary values for pragmatic biological validation of the
identified biomarkers (GO analysis, experimental validation).

The multi-‘omics module is still in active development
→ follow us: http://mixomics.org/category/news/

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ’omics feature selection and
multiple data integration. bioRxiv 108597
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Breast cancer study

Multi-‘omics breast cancer study
with Amrit Singh (UBC), Benoît Gautier, Florian Rohart (UQ)

Outcome Y : lumA, lumB, HER2, basal
cancer subtypes (n = 379)
‘Omics: mRNA (2,000), miRNA (184),
CpGs (2,000), Proteins (142)
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DIABLO design

 Identify a correlated multi-‘omics signature to explain/predict Y.

∗ Prefiltered based on sd
powered by
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Breast cancer study

Multi-’omics signature connectivity

Relevance network of the signature identified by the integrative methods
(link indicate |r| > 0.6).

DIABLO seeks for subsets of ‘omics variables maximally correlated.

Signature between the ‘omics is more balanced than concatenation.
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Breast cancer study

Multi-‘omics signature

Block: mrna Block: mirna

Block: methyl Block: prot
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Asthma study

Multi-‘omics asthma study

14 asthmatic individuals undergoing allergen inhalation challenge
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Leukocyte gene expression and plasma metabolite abundance reduced to
pathway scores using component scores (‘eigengene summarisation’,).

Singh A, Gautier B, Shannon C, Vacher M, Rohart M, Tebbutt S, Lê Cao K-A. DIABLO - an
integrative, multi-omics, multivariate method for multi-group classification, bioRxiv 067611
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Asthma study

Multi-‘omics asthma study
Our multi-‘omics signature suggests mechanistic link with response
to allergen challenge across different biological layers
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• Metabolite pathway: Valine, leucine
and isoleucine metabolism module (↑
post challenge)

Singh A, Gautier B, Shannon C, Vacher M, Rohart M, Tebbutt S, Lê Cao K-A. DIABLO - an
integrative, multi-omics, multivariate method for multi-group classification, bioRxiv 067611
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Statistics in the ‘omics era

Strong potential of multivariate methods, especially for
challenging, unconventional, high variability data

data exploration; classification; integration of multiple data
sets; biomarker identification
may provide a deeper understanding of a biological system

Multiple ‘omics integration is a complex statistical problem
that requires well-stated biological questions and strong multi
disciplinary collaborations

www.mixOmics.org @mixOmics_team

mixomics@math.univ-toulouse.fr kimanh.lecao@unimelb.edu.au
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