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A.1 Simulation study and method validation
Simulated data generation. We simulated data to evaluate and compare DynOmics to other methods to identify associations
between trajectories. Data were generated based on similar scenarios to1 with different parameters. Specifically, five reference
levels were obtained using an impulse model and either 7 and 14 time points.2 For each modelled reference, P = 50 queries with
introduced time delay −2,1,0,1,2 (ten for each delay), were created. Moreover, we modelled N = 50 flat trajectories for each
reference as negative control. Then different levels of normal distributed noise were added N (0,σ2);σ = 0.1,0.2,0.3,0.5.
Each combination of varying number of time points and noise level was generated ten times. Table S1 presents an overview of
the different parameters used for the simulated data. Figure S1 displays example references (black) and queries with different
introduced noise σ = 0.1,0.5, delays (color coded) and the random trajectories (grey).

Table S1. Simulated data schema. Presented is the number of time points, the number of different reference and query trajectories, the
introduced delays, the number of flat trajectories, and the added noise per generated data set.

Time
points

# of different expression
trajectories

Delays for each trajectories # of flat trajec-
tories

Noise # of generated
datasets

7 5
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Figure S1. Examples of simulated trajectories. Presented are examples of simulated trajectories for 7 and 14 time points with different
added normal distributed noise (σ = 0.1,0.5). The reference (black) is displayed in concordance with the delayed query trajectories ranging
from −2 to 2 coloured in green (−2), light blue (−1), dark blue (0), red (1), orange (2). The randomly generated expression trajectories are
coloured in grey.
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Fast Fourier transform visual explanation We describe the Fourier Transform components as depicted in Figure S2. For
a given time series x = (x1, . . . ,xt , . . .xT ), t = 1, . . .T , let r denote its amplitude (size) and φ its phase angle (delay) of
oscillations at different frequencies (speeds) k. The time series x is first decomposed into circular components for each
frequency k = 1, . . . ,T −1 as:

Xk =
1
T

T−1

∑
t=0

xte−i2πk t
T . (1)

As the amplitude at frequency k = 0 describes the y-axis offset (i.e. the global differences of expression levels), it is not
included in our analysis context. Equation (1) can be written with polar coordinates with real part a and imaginary part b as
Xk = ak +bki and represents the amount of frequency k in the time series (Figure S2 a). For each frequency k = 1, . . . ,T −1 we

can then calculate the amplitude rk of the component, defined as rk =
√

a2
k +b2

k . The amplitude rk (Figure S2 a; orange line)
reflects the contribution of the frequency k to the overall pattern of the time series, and the maximum amplitude rk describes the
main pattern of the time series. In Figure S2 b we exemplify the deconstruction of a time series of length four into its oscillating
components. The sum of the oscillations will then reconstruct the original time series.

The phase angle is the starting point on the circle that forms the pattern (Figure S2 a; grey point) and is usually defined as
the argument of the FT at frequency k, denoted Arg(Xk). For simplicity, we can transform the phase angle φk in degrees by:

φk =
180∗Arg(Xk)

π
.

ak

bk*i

𝑟𝑘 = 𝑎𝑘
2 + 𝑏𝑘

2

ϕ𝑘 =
180 ∗ 𝐴𝑟𝑔(𝑋𝑘)

𝜋

Frequency (k)

0 1 2 3

𝑒𝑖𝐴𝑟𝑔(𝑋𝑘)

r k

a b

Figure S2. Diagram of Fourier transform components. a) represents the amplitude r of the circle and the phase angle φ for a given
frequency. b) represents the decomposition of the signal for different frequencies k, and how many times the decomposed signature is ‘spun’
around the circle(e.g. once when k = 1, twice when k = 2, etc.) When k = 0, the amplitude represents the y-axis offset of the data (blue line).

Methods compared to DynOmics. We compared DynOmics with correlation methods namely (lagged) Pearson correlation
and a Dynamic Time Warping (DTW) method DTW4Omics,3 described briefly below.
Since the Pearson correlation cannot identify relationships between two trajectories if there is a time delay, we can overcome
this issue by introducing time lags into x and y and choose the lag l that maximises the correlation between x and y. Let the
lagged Pearson correlation be defined as in Equation ?? and the optimal delay as in Equation ?? (in the main article) the lags
L for the lagged Pearson correlation is defined as L = b−T

2 c, · · · ,b
T
2 c. The trajectories were restricted to be lagged half of

the trajectories’ number of time points, since lagged Pearson correlation tended to maximise the delay to maximise correlation.
DTW4Omics obtains two trajectories and seeks for an alignment that minimizes the Euclidean distance (d) via inserting,
deleting or matching the trajectories time points. The algorithm to minimize the distance between two trajectories x and y
(DTWDist), with length Tx, Ty respectively, is defined as follows:

function DTWDIST(x,y)
DTW = array [0 . . .Tx,0 . . .Ty]
for i = 1 to Tx do DTW[i, 0] = ∞

end for . initiation of infinite values to align each time point
for i = 1 to Ty do DTW[0, i] = ∞

end for
DTW[0, 0] = 0
for i = 1 to Tx do

for j = 1 to Ty do
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cost = d(xi, y j)
DTW[i, j] = cost + minimum(DTW[i-1, j ], . insertion

DTW[i , j-1], . deletion
DTW[i-1, j-1]) . match

end for
end for
return DTW[n, m]

end function
To determine if an alignment occurs by random chance a permutation test is used. The proposed test by Cavill et al.3

independently permutes xperm and yperm then calculates the DTW distance as defined above,

Pvalue =

(
100

∑
k=1

(DTWDist(xperm,yperm)k < DTWDist(x,y))

)
/100. (2)

As DTW4Omics generates P values as measurement of association, we also used the Pearson correlation of the DTW4Omics
alignment (DTW4OmicsCor) for comparison. The estimated delay for DTW4Omics was the absolute maximum number of
aligned time points to a single time point in either reference or query sequence.
A benchmark was created by realigning reference and query trajectories using the introduced delay and the Pearson correlation
as a measurement of association. We referred to this benchmark as ‘Real delay’. We set a fixed threshold of 0.9 for correlation
values and 0.05 for P values adjusted by false discovery rate (FDR).4

Sensitivity and specificity. The methods’ sensitivity and specificity were used to assess and compare the methods’ ability
to identify associated reference-query trajectory pairs and disregard reference-random trajectory pairs on the simulated data.
For each simulated data set we counted the number of true associated trajectories (true positives; TP), which was defined as
a reference-query pair that is greater/smaller than the defined correlation (cor > 0.9) or P value threshold (P < 0.05). The
number of true not associated or rejected trajectories, was a reference-random trajectory pair (true negative; TN) that was not
greater or smaller than the defined correlation (cor > 0.9) or P value threshold (P < 0.05). We then calculated the sensitivity
defined as the ratio of the TP and the number of truly associated trajectories (P) for each data set,

Sensitivity =
T P
P

. (3)

The specificity was accordingly calculated for each simulated data set and was defined as the the ratio of the TN and the number
of truly not-associated trajectories (N),

Speci f icity =
T N
N

. (4)

Both measurements ranged between 0 and 1 with higher values indicating high sensitivity/specificity.

Results on simulated Data
To assess and compare DynOmics performance with current available methods we used the measures of sensitivity and
specificity while identifying associations in simulated data. Generally, sensitivity performance decreased for all methods when
noise increased. In terms of sensitivity DynOmics outperformed every method, when the number of time points was small
(Figure S3 A; 7 time points). DynOmics’ average sensitivity ranged from 0.97 to 0.59. The next best performing algorithm
was lagged Pearson correlation and DTW4OmicsCor, which identified at least 8% less true associated trajectories (sensitivity
ranging from 0.89 to 0.51 and 0.82 to 0.46, respectively). The Pearson correlation that did not take time delays into account
performed the worst with a sensitivity between 0.36 and 0.16 showing that ordinary correlation measurements is not sufficient
to detect associations when trajectories are delayed. The specificity of DynOmics was slightly lower than the DTW methods
(0.95-0.97) and Pearson correlation (1), however it was still greater than 0.94 which is a high specificity (Figure S3 B; 7 time
points). The method with the lowest specificity was lagged Pearson correlation (0.91).

For a large number of time points sensitivity was extremely high (1−0.95) for all methods accounting for delays with
noise σ = {0.1,0.2,0.3} (Figure S3 A; 14 time points). The only method that does not account for delays, Pearson correlation,
identified only 47 to 40% of all truly associated simulated trajectories. All methods performance dropped dramatically when
the noise in the data increased (σ = 0.5). DTW4Omics the only method not based on Pearson correlation measurement was the
only method that maintained high sensitivity (0.87) and was also better than the benchmark (0.6). Specificity was overall very
high for all methods and noise levels ranging from 1 to 0.96 (Figure S3 B; 14 time points).
Furthermore, we investigated the methods’ ability to estimate the simulated time delay. DynOmics outperformed the other
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Figure S3. Sensitivity and specificity on simulated data. The graphs show each method’s performance for 7 and 14 time points and
different noises in terms a) sensitivity and b) specificity. The x-axis represents the variance of the introduced noise (σ = {0.1,0.2,0.3,0.5})
of the analysed simulated data and the y-axis the mean (dot) and 95% confidence interval (error bar) of the respective performance measure.
The proposed DynOmics approach (black) is visualized in comparison to the ‘Real delay’ used as benchmark (green), Pearson (light blue),
lagged Pearson (dark blue), DTW4OmicsCor (red) and DTW4Omics (yellow).

methods in estimating the simulated delays for low number of time points (Table S2). Correct delay estimates for DynOmics
ranged between 95 to 76%, while for lagged Pearson correlation and DTW4Omics they only ranged from 86 to 53% and 63 to
65%, respectively. For 14 time points DynOmics and lagged Pearson correlation performed similar with 99 to 90% and 100
to 94%, respectively, while DTW4Omics percentage of correct estimations was low (60−42%). The separation of correct
estimates by delay revealed that both, lagged Pearson correlation and DTW4Omics were inaccurate with increasing delay,
while DynOmics estimates remained accurate for noise σ = {0.1,0.2,0.3} (Figure S4).
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Table S2. Percentage of correct estimated delays. The percentage of correct estimated delays is presented for DynOmics, lagged Pearson
and DTW4Omics over all 500 generated associated trajectories per time point and noise combination.

Percentage (%) correct estimated delays
Time points Noise DynOmics Lagged Pearson DTW4Omics

7

0.1 95 86 63
0.2 91 73 60
0.3 85 61 58
0.5 76 53 65

14

0.1 99 100 60
0.2 98 97 48
0.3 93 88 42
0.5 90 94 53
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Figure S4. Proportion of correct estimated delays separated by simulated delay. For each combination of time points (7,14) and
noise (σ = {0.1,0.2,0.3,0.5}) the proportion of the correct estimated delays is displayed on the y-axis (dot) against the originally simulated
delay on the x-axis (−2,−1,0,1,2). Colours represent the results for the different methods, namely DynOmics (black), Lagged Pearson (dark
blue) and DTW4Omics (orange).
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A.2 Lung Organogenesis
We compared the average overlap of identified association with correlation smaller than −0.9 between Pearson correlation of
raw data (‘Raw cor’), Pearson correlation on LMMS modelled data (‘LMMS Cor’) and DynOmics (Table S3). We observed that
correlation analysis on the modelled data alone identified on average 85% more associated trajectories than correlation analysis
on raw data. DynOmics had similar numbers as Pearson correlation on modelled data when comparing it to the correlation
analysis on raw data, average of 86% more identified associated trajectories. There was a big overlap between DynOmics and
Pearson correlation on modelled data suggesting that many associations had no or little time delay (82% and 86%). The on
average 18% not identified my Pearson correlation on modelled data can be explained by time delay trajectories. The 14% of
associations identified by Pearson correlation that were not identified by DynOmics were likely due to identifying optimal
delays that resulted in positive correlations. These associations however, were not considered in this analysis, since we only
compared negative correlated associations.

Table S3. Average percentage of agreement and standard deviation (sd) of the identified associated mRNAs. For each miRNA we
calculated the percentage of agreement of the identified associations (cor > 0.9) using correlation on raw data (‘Raw Cor’), on LMMS
modelled (‘LMMS Cor’) and DynOmics. The numbers presented are the average agreement and the sd.

Average Percentage % (sd)

m
RawCor∩m

#RawCor
LMMSCor∩m

#LMMSCor
DynOmics∩m

#DynOmics
Raw Cor - 15 (17) 14 (16)
LMMS Cor 79 (24) - 82 (16)
DynOmics 77 (24) 86 (1) -

We then compared the predicted miRNA targets based on co-expression and sequence similarity. Table S4-S7 show for each
miRNA the number predicted targets based on co-expression for Pearson correlation on raw data and LMMS modelled data as
well as DynOmics, and sequence similarity using microRNA.org, miRDB, and TargetScan, respectively. Figure S5 summarises
the numbers for all miRNAs in boxplots. The figure suggestions that there is a big difference of number of predictions based
on co-expression and sequence similarity depending on the method applied. For co-expression we observe that DynOmics
and Pearson correlation on LMMS modelled data has most number of predictions and correlation analysis on raw data fewest
(Figure S5 a). For predictions based on sequence similarity we observe that microRNA.org predicts on median around ∼ 3,000
targets compared to miRDB and TargetScan which in median predict only∼ 400 (Figure S5 b). When comparing the percentage
overlap of miRNA targets predicted by co-expression and sequence similarity (Figure S5 c) we observe little overlap. Overall
DynOmics and Pearson correlation on LMMS modelled data have more overlap than Pearson correlation on raw data.
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Table S4. Number of associated miRNA-mRNA expression trajectories. For each miRNA the overall number of identified associated
mRNAs is presented when performing correlation analysis on the raw data (Raw Cor), LMMS modelled data (LMMS Cor) or DynOmics.
DynOmics results are presented separated if mRNA expression changes after (delay < 0), simultaneous (delay = 0) or prior to (delay > 0)
miRNA expression.

miRNA Raw Cor LMMS Cor After Simultanious Prior

mmu-let-7c 1 3180 327 2572 379

mmu-let-7d 0 94 37 53 5

mmu-let-7e 2 64 8 55 15

mmu-let-7g 0 69 448 50 43

mmu-let-7i 0 109 35 38 7

mmu-miR-100 0 3180 336 2563 379

mmu-miR-106a 241 4338 761 3196 454

mmu-miR-126-3p 2140 3180 808 2058 412

mmu-miR-126-5p 1759 3180 418 2481 379

mmu-miR-127 44 168 25 123 26

mmu-miR-130a 0 4338 368 3622 421

mmu-miR-130b 140 4338 416 3499 496

mmu-miR-133a 362 3180 327 2572 379

mmu-miR-134 159 2347 556 2148 138

mmu-miR-135b 74 214 30 122 37

mmu-miR-136 7 65 8 33 6

mmu-miR-138 1 9 61 9 8

mmu-miR-139-5p 33 391 13 191 112

mmu-miR-140 3 3180 410 2489 379

mmu-miR-142-3p 908 3180 524 2375 379

mmu-miR-145 7 3180 334 2564 380

mmu-miR-146a 1967 3476 475 1184 2007

mmu-miR-146b 1741 3013 286 1100 1699

mmu-miR-149 0 4338 530 3292 589

mmu-miR-150 2384 3180 327 2572 379

mmu-miR-151-3p 4 3180 362 2504 412

mmu-miR-15a 0 3180 332 2567 379

mmu-miR-15b* 0 4338 494 3496 421

mmu-miR-16 564 3180 451 2445 382

mmu-miR-17 142 4338 583 3358 470

mmu-miR-181a 2 3180 337 2562 379

mmu-miR-182 37 4338 566 3373 472

mmu-miR-191 276 3180 327 2572 379

mmu-miR-195 850 3180 382 2475 421

mmu-miR-19a 227 2468 319 2238 169

mmu-miR-19b 163 4338 487 3503 421

mmu-miR-200a 687 1719 642 1123 148

mmu-miR-200b 40 542 49 496 19

mmu-miR-200c 37 294 19 277 12

mmu-miR-20a 197 4338 367 3623 421

mmu-miR-21 1407 3180 332 2567 379

mmu-miR-210 4 52 0 38 14

mmu-miR-214 14 4338 607 3382 422

mmu-miR-214* 202 4338 367 3623 421

mmu-miR-222 1579 3180 390 2445 443

mmu-miR-223 2086 3537 479 3035 146

mmu-miR-24 1181 3180 340 2559 379

mmu-miR-24-2* 752 3180 832 2034 412

mmu-miR-26a 326 3180 369 2530 379

mmu-miR-26b 770 3180 327 2572 379

DynOmics

Overall number of identified associations
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Table S4. Number of associated miRNA-mRNA expression trajectories.

mmu-miR-27a 429 3180 328 2571 379

mmu-miR-27b 0 3180 327 2572 379

mmu-miR-28* 0 3180 343 2556 379

mmu-miR-296-5p 21 232 33 166 17

mmu-miR-29a 2006 3180 328 2571 379

mmu-miR-29c 964 2713 2209 535 227

mmu-miR-301a 10 4338 395 3595 421

mmu-miR-301b 25 284 43 197 42

mmu-miR-30a 1529 3180 328 2571 379

mmu-miR-30a* 642 3180 462 2429 387

mmu-miR-30b 138 3180 327 2572 379

mmu-miR-30c 559 3180 446 2423 409

mmu-miR-30d 2021 3180 468 2338 472

mmu-miR-30e 1491 3180 481 2204 593

mmu-miR-30e* 608 3180 328 2571 379

mmu-miR-31 348 3180 635 2255 388

mmu-miR-322 54 219 3 131 13

mmu-miR-322* 5 53 4 39 1

mmu-miR-323-3p 92 4338 927 3054 430

mmu-miR-328 19 3180 334 2565 379

mmu-miR-335-3p 22 84 11 50 4

mmu-miR-335-5p 1 55 2 37 4

mmu-miR-34b-3p 2159 3180 514 2327 437

mmu-miR-351 0 94 5 70 10

mmu-miR-365 529 3180 665 2234 379

mmu-miR-370 13 4338 710 3117 584

mmu-miR-375 0 3180 543 2356 379

mmu-miR-376c 53 190 24 57 32

mmu-miR-379 74 207 23 111 26

mmu-miR-382 12 272 56 214 25

mmu-miR-409-3p 173 295 257 182 91

mmu-miR-410 124 312 159 199 81

mmu-miR-411 41 163 20 107 11

mmu-miR-429 99 226 2670 197 3

mmu-miR-431 97 255 141 198 33

mmu-miR-433 12 4338 380 3610 421

mmu-miR-434-3p 13 85 9 29 14

mmu-miR-449a 147 444 30 214 18

mmu-miR-466d-3p 680 3180 484 2376 418

mmu-miR-467a* 39 433 230 205 238

mmu-miR-486 926 3180 332 2567 379

mmu-miR-503 9 73 4 64 10

mmu-miR-503* 18 224 25 128 20

mmu-miR-532-5p 1 4338 849 2978 584

mmu-miR-539 92 250 148 196 35

mmu-miR-672 21 130 23 69 42

mmu-miR-680 0 3180 368 2531 379

mmu-miR-690 0 4338 737 3253 421

mmu-miR-699 0 4338 376 3614 421

mmu-miR-708 12 80 270 73 9

mmu-miR-709 0 4338 367 3623 421

mmu-miR-805 0 4338 520 3470 421

mmu-miR-877* 0 3180 743 2064 471

mmu-miR-92a 62 4338 766 3188 457
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Table S5. Overlap of predicted miRNA targets from microRNA.org and associated miRNA-mRNA expression trajectories.
Presented are the number of miRNA target predictions in the microRNA.org database (DB) (No. DB prediction), the number of associated
miRNA-mRNA trajectories that overlap with the mircoRNA.org DB predictions for correlation analysis on the raw data (Raw Cor) and
LMMS modelled data (LMMS Cor). Finally, the number of overlaps between the miRNAs targets of microRNA.org and DynOmics are
presented separated if mRNA expression changes after (delay < 0), simultaneous (delay = 0) or prior to (delay > 0) miRNA expression.

miRNA

No. DB 

prediction Raw Cor LMMS Cor After Simultanious Prior

mmu-let-7c 2659 0 49 4 39 7

mmu-let-7d 2610 0 3 0 3 0

mmu-let-7e 2673 0 1 0 1 0

mmu-let-7g 2596 0 2 8 1 1

mmu-let-7i 2558 0 3 0 0 0

mmu-miR-100 373 0 5 0 5 0

mmu-miR-106a 3621 4 79 14 65 7

mmu-miR-126-3p 87 1 3 1 2 0

mmu-miR-127 420 0 0 0 0 0

mmu-miR-130a 2887 0 66 3 58 9

mmu-miR-130b 2962 4 65 2 56 11

mmu-miR-133a 1780 2 49 1 44 8

mmu-miR-134 2632 4 31 9 26 4

mmu-miR-135b 3433 2 4 1 1 3

mmu-miR-136 3355 0 1 0 0 0

mmu-miR-138 2933 0 0 0 0 0

mmu-miR-139-5p 3154 1 10 0 6 3

mmu-miR-140 2416 0 64 7 52 7

mmu-miR-142-3p 2060 10 47 10 33 5

mmu-miR-145 3220 0 54 5 47 4

mmu-miR-146a 3334 31 55 6 24 32

mmu-miR-146b 3323 30 45 6 18 23

mmu-miR-149 3332 0 74 4 61 12

mmu-miR-150 2643 47 63 10 47 11

mmu-miR-15a 4302 0 88 11 73 8

mmu-miR-15b* 4394 0 97 14 78 9

mmu-miR-16 4232 18 84 13 67 8

mmu-miR-17 3695 5 79 9 68 7

mmu-miR-181a 4517 0 105 12 85 11

mmu-miR-182 3235 0 65 7 54 5

mmu-miR-191 932 2 23 1 21 3

mmu-miR-195 4116 19 81 12 64 9

mmu-miR-19a 3312 3 33 7 28 3

mmu-miR-19b 3195 3 68 8 53 10

mmu-miR-200a 4222 19 46 17 32 4

mmu-miR-200b 3808 2 15 2 14 0

mmu-miR-200c 3794 1 6 0 6 0

mmu-miR-20a 3803 3 78 6 69 8

mmu-miR-21 2340 29 47 4 41 5

mmu-miR-210 839 0 0 0 0 0

mmu-miR-214 3970 0 73 5 60 12

mmu-miR-214* 6310 8 122 9 103 16

mmu-miR-222 2541 26 48 9 37 4

mmu-miR-223 2518 38 58 13 45 4

mmu-miR-24 3371 20 55 6 47 6

mmu-miR-26a 3287 10 69 8 58 6

mmu-miR-26b 3388 15 69 8 58 7

DynOmics

microRNA.org overlap
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Table S5. Overlap of predicted miRNA targets from miRNA.org and associated miRNA-mRNA expression trajectories.

mmu-miR-27a 4060 14 87 13 71 5

mmu-miR-27b 4131 0 84 12 70 4

mmu-miR-28* 2657 0 52 1 44 11

mmu-miR-29a 2871 27 46 3 39 8

mmu-miR-29c 2918 16 38 28 9 2

mmu-miR-301a 3271 0 81 6 69 11

mmu-miR-301b 3238 0 6 0 6 1

mmu-miR-30a 4250 43 74 9 58 14

mmu-miR-30a* 4250 14 74 11 57 14

mmu-miR-30b 4288 8 78 8 62 14

mmu-miR-30c 4350 14 78 11 62 11

mmu-miR-30d 4079 52 72 12 54 13

mmu-miR-30e 4395 44 75 10 57 17

mmu-miR-30e* 4395 12 75 9 59 15

mmu-miR-31 2985 11 66 10 47 15

mmu-miR-322 4334 2 6 0 3 1

mmu-miR-322* 6924 0 2 0 1 0

mmu-miR-328 1864 1 33 1 28 5

mmu-miR-335-5p 3120 0 1 1 0 0

mmu-miR-351 2210 0 1 0 1 0

mmu-miR-365 1561 13 42 5 34 4

mmu-miR-370 2978 0 55 11 39 8

mmu-miR-375 1006 0 22 10 14 0

mmu-miR-376c 3544 3 5 0 3 0

mmu-miR-379 1493 0 2 0 0 1

mmu-miR-382 3174 1 7 0 5 0

mmu-miR-410 4653 4 9 2 4 4

mmu-miR-411 1741 1 2 0 1 0

mmu-miR-429 3891 3 6 73 4 0

mmu-miR-431 2037 0 0 3 0 0

mmu-miR-433 2651 0 67 10 52 8

mmu-miR-449a 3163 2 11 0 4 1

mmu-miR-486 1750 4 27 3 22 3

mmu-miR-503 984 0 0 0 0 0

mmu-miR-503* 984 0 0 0 0 0

mmu-miR-539 5055 2 9 2 7 2

mmu-miR-708 2757 0 0 6 0 0

mmu-miR-92a 2168 1 36 9 25 3
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Table S6. Overlap of predicted miRNA targets from miRDB associated miRNA-mRNA expression trajectories. Presented are the
number of miRNA target predictions in the miRDB database (DB) (No. DB prediction), the number of associated miRNA-mRNA trajectories
that overlap with the miRDB predictions for correlation analysis on the raw data (Raw Cor) and LMMS modelled data (LMMS Cor). Finally,
the number of overlaps between the miRNAs targets of miRDB and DynOmics are presented separated if mRNA expression changes after
(delay < 0), simultaneous (delay = 0) or prior to (delay > 0) miRNA expression.

miRNA

No. DB 

prediction

 

Raw Cor LMMS Cor After  Simultanious Prior

mmu-miR-139-5p 428 0 1 0 1 0

mmu-miR-151-3p 134 0 4 0 4 0

mmu-miR-296-5p 462 0 0 0 0 0

mmu-miR-323-3p 410 0 8 1 7 0

mmu-miR-335-3p 1190 1 1 0 1 0

mmu-miR-335-5p 410 0 0 0 0 0

mmu-miR-34b-3p 245 1 2 0 2 0

mmu-miR-409-3p 291 0 1 2 0 0

mmu-miR-434-3p 173 0 0 0 0 0

mmu-miR-466d-3p 1265 4 23 3 17 3

mmu-miR-532-5p 279 0 4 1 3 0

mmu-miR-680 341 0 8 4 4 1

mmu-miR-690 319 0 8 1 6 1

mmu-miR-709 1494 0 19 1 18 0

miRDB overlap

DynOmics
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Table S7. Overlap of predicted miRNA targets from TargetScan associated miRNA-mRNA expression trajectories. For each
miRNA the number of miRNA target predictions in the TargetScan database (DB) (No. DB prediction) and the overlap with the expression
data analysis are presented. The number of associated miRNA-mRNA trajectories that overlap with the TargetScan DB predictions for
correlation analysis on the raw data (Raw Cor) and LMMS modelled data (LMMS Cor). Finally, the number of overlaps between the
miRNAs targets of TargetScan and DynOmics are presented separated if mRNA expression changes after (delay < 0), simultaneous
(delay = 0) or prior to (delay > 0) miRNA expression.

miRNA

No. DB 

prediction

Raw 

Cor

LMMS 

Cor After Simultanious Prior

mmu-miR-126-3p 25 0 0 0 0 0

mmu-miR-127 21 1 1 0 1 0

mmu-miR-134 249 0 6 2 3 2

mmu-miR-136 369 1 1 0 1 0

mmu-miR-138 773 0 0 0 0 0

mmu-miR-139-5p 503 0 1 0 1 0

mmu-miR-140 461 0 15 1 12 3

mmu-miR-142-3p 481 4 16 3 12 1

mmu-miR-145 928 0 20 1 17 2

mmu-miR-149 550 0 14 1 11 2

mmu-miR-150 379 5 7 2 5 0

mmu-miR-17 1563 2 28 4 24 4

mmu-miR-182 1471 0 25 5 18 3

mmu-miR-191 98 0 2 0 2 0

mmu-miR-21 421 5 18 0 17 2

mmu-miR-210 40 0 0 0 0 0

mmu-miR-214 895 0 18 1 16 1

mmu-miR-214* 1316 1 22 1 20 1

mmu-miR-223 466 3 7 0 7 0

mmu-miR-24 824 7 19 3 16 1

mmu-miR-31 530 2 13 1 12 2

mmu-miR-370 547 0 14 3 11 2

mmu-miR-375 292 0 8 2 6 1

mmu-miR-376c 396 0 1 0 0 0

mmu-miR-379 133 0 0 0 0 0

mmu-miR-382 293 0 0 0 0 0

mmu-miR-410 856 0 1 0 1 0

mmu-miR-411 120 0 0 0 0 0

mmu-miR-431 227 0 0 0 0 0

mmu-miR-433 496 0 17 3 12 3

mmu-miR-503 477 0 0 0 0 0

mmu-miR-503* 477 0 1 0 0 0

mmu-miR-539 936 1 1 2 1 0

TargetScan overlap

DynOmics
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Figure S5. Summary of miRNA predictions based on co-expression and sequence similarity Presented is a visual summary of
Supporting Tables S4-S7. In a) we present summarised as boxplots the number of putative miRNA targets based on co-expression (cor
<−0.9) for DynOmics (grey), Pearson correlation on LMMS modelled data (orange) and on raw data (lightblue). In b) we depict the number
of predictions of putative miRNA targets for databases microRNA.org (green), miRDB (red) and TargetScan (purple). In c) for each database
we present the percentage of overlap of predicted putative miRNA targets based on sequence similarity with the predictions made based on
co-expression.
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