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E2. N-integration across multiple ‘omics data sets with DIABLO
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We first load mixOmics:

> library(mixOmics)

E2.1. Data

Human breast cancer is a heterogeneous disease in terms of molecular alterations, cellular compo-

sition, and clinical outcome. Breast tumours can be classified into several subtypes, according to

levels of mRNA expression (Sørlie et al., 2001). Here we consider a subset of data generated by The

Cancer Genome Atlas Network (Cancer Genome Atlas Network et al., 2012). For the package, data

were normalised and drastically prefiltered for illustrative purposes. The data were divided into a

training set with a subset of 150 samples from the mRNA, miRNA and proteomics data, and a test

set including 70 samples, but only with mRNA and miRNA data (proteomics missing). The aim of

the N-integration analysis is to identify a highly correlated multi-‘omics signature discriminating the

breast cancer subtypes Basal, Her2 and LumA (Singh et al., 2016).

The data for DIABLO are set as a list of data matrices matching the same samples in rows.

> data('breast.TCGA')
> # extract training data

> data = list(mRNA = breast.TCGA$data.train$mrna,

+ miRNA = breast.TCGA$data.train$mirna,

+ proteomics = breast.TCGA$data.train$protein)

> # check dimension

> lapply(data, dim)

$mRNA

[1] 150 200

$miRNA

[1] 150 184

$proteomics

[1] 150 142
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> # outcome

> Y = breast.TCGA$data.train$subtype

> summary(Y)

Basal Her2 LumA

45 30 75

E2.2. Parameter choice

Here we choose a design where all blocks (data sets) are connected with a link of 0.1 (see Supplemental
Information).

> design = matrix(0.1, ncol = length(data), nrow = length(data),

+ dimnames = list(names(data), names(data)))

> diag(design) = 0

> design

mRNA miRNA proteomics

mRNA 0.0 0.1 0.1

miRNA 0.1 0.0 0.1

proteomics 0.1 0.1 0.0

First, we fit a DIABLO model without variable selection to assess the global performance and

choose the number of components for the final DIABLO model. The function perf is run with

10-fold cross validation repeated 10 times.

The elapsed reuning time is reported in seconds.

> sgccda.res = block.splsda(X = data, Y = Y, ncomp = 5,

+ design = design)

> set.seed(123) # for reproducibility, only when the `cpus' argument is not used

> t1 = proc.time()

> perf.diablo = perf(sgccda.res, validation = 'Mfold', folds = 10, nrepeat = 10)

> t2 = proc.time()

> running_time = t2 - t1; running_time

user system elapsed

58.929 0.924 62.011

> #perf.diablo # lists the different outputs

> plot(perf.diablo)

>
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From the performance plot above we observe that both overall and balanced error rate (BER)

decrease from 1 to 2 components. The standard deviation indicates a potential slight gain in adding

more components. The centroids.dist distance seem to give the best accuracy (see Supplemental

Material (Rohart et al., 2017)). Considering this distance and the BER, the output $choice.ncomp

indicates an optimal number of components = 2 for the final DIABLO model.

> perf.diablo$choice.ncomp$WeightedVote

max.dist centroids.dist mahalanobis.dist

Overall.ER 2 3 3

Overall.BER 5 2 4

> ncomp = perf.diablo$choice.ncomp$WeightedVote["Overall.BER", "centroids.dist"]

Now that the number of components is chosen, the next step is to choose the optimal number

of variables to select in each data set using the tune.block.splsda function. We provide a grid

of keepX values for each type of ‘omics. Note that we set the grid to favour a small (but not too

small) signature while allowing to obtain a sufficient number of variables for downstream validation

/ interpretation.

Here we have saved the results into a RData object, so this code will not be run during the

Sweave compilation. The elapsed running time is indicated in seconds. The function tune is run

with 10-fold cross validation, but repeated only once. Note that for a more thorough tuning process,

provided sufficient computational time, we could increase the nrepeat argument.

> #set.seed(123) # for reproducibility, only when the `cpus' argument is not used

> test.keepX = list (mRNA = c(5:9, seq(10, 18, 2), seq(20,30,5)),

+ miRNA = c(5:9, seq(10, 18, 2), seq(20,30,5)),

+ proteomics = c(5:9, seq(10, 18, 2), seq(20,30,5)))

> t1 = proc.time()
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> tune.TCGA = tune.block.splsda(X = data, Y = Y, ncomp = ncomp,

+ test.keepX = test.keepX, design = design,

+ validation = 'Mfold', folds = 10, nrepeat = 1,

+ dist = "centroids.dist", cpus = 2)

> t2 = proc.time()

> running_time = t2 - t1; running_time

> list.keepX = tune.TCGA$choice.keepX

> list.keepX

user system elapsed

3.366 0.144 1052.726

The number of features to select on each component is returned in tune.TCGA$choice.keepX:

> list.keepX = tune.TCGA$choice.keepX

> tune.TCGA$choice.keepX

$mRNA

[1] 16 7

$miRNA

[1] 18 5

$proteomics

[1] 5 5

E2.3. Final model

The final DIABLO model is run as:

> sgccda.res = block.splsda(X = data, Y = Y, ncomp = ncomp,

+ keepX = list.keepX, design = design)

> #sgccda.res # lists the different functions of interest related to that object

The warning message informs that the outcome Y has been included automatically in the design,

so that the covariance between each block’s component and the outcome is maximised, as shown in

the final design output:

> sgccda.res$design

mRNA miRNA proteomics Y

mRNA 0.0 0.1 0.1 1

miRNA 0.1 0.0 0.1 1

proteomics 0.1 0.1 0.0 1

Y 1.0 1.0 1.0 0

The selected variables can be extracted with the function selectVar, for example in the mRNA

block, along with their loading weights:

> # mRNA variables selected on component 1

> selectVar(sgccda.res, block = 'mRNA', comp = 1)
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$mRNA

$mRNA$name

[1] "ZNF552" "KDM4B" "CCNA2" "LRIG1" "PREX1" "FUT8" "C4orf34"

[8] "TTC39A" "ASPM" "SLC43A3" "MEX3A" "SEMA3C" "E2F1" "STC2"

[15] "FMNL2" "LMO4"

$mRNA$value

value.var

ZNF552 -0.483342279

KDM4B -0.408455112

CCNA2 0.316039919

LRIG1 -0.301880859

PREX1 -0.300287075

FUT8 -0.282105086

C4orf34 -0.269503106

TTC39A -0.258567084

ASPM 0.173086718

SLC43A3 0.163846613

MEX3A 0.144064728

SEMA3C -0.128643646

E2F1 0.059131148

STC2 -0.036197206

FMNL2 0.018170346

LMO4 0.006438995

$comp

[1] 1

Also note that the stability of the selected variables can be extracted from the perf function,

similar to the example given in the PLS-DA analysis (Electronic file in (Rohart et al., 2017)).

E2.4. Sample plots

plotDIABLO is a diagnostic plot to check whether the correlation between components from each

data set was maximised as specified in the design matrix. We specify the dimension to be assessed

with the ncomp argument.

> plotDiablo(sgccda.res, ncomp = 1)
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The set of first components from all data set are highly correlated. The colors and ellipses

represent the sample subtypes and indicate the discriminative power of each component to separate

the different tumour subtypes.

The sample plot with the plotIndiv function projects each sample into the space spanned by

the components from each block. The optional argument blocks can output a specific data set.

Ellipse plots are also available (argument ellipse = TRUE). This type of graphic allows us to better

understand the information extracted from each data set and its discriminative ability.

> plotIndiv(sgccda.res, ind.names = FALSE, legend = TRUE, style="ggplot2")
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In the arrow plot below, the start of the arrow indicates the centroid between all data sets for a

given sample and the tip of the arrow the location of the same sample in each block. Such graphic

highlights the agreement between all data sets at the sample level when modelled with DIABLO.

> plotArrow(sgccda.res, ind.names = FALSE, legend = TRUE, title = 'DIABLO')
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E2.5. Variable plots

Several graphical outputs are available to visualise and mine the associations between the selected

variables.

The correlation circle plot highlights the contribution of each selected variable to each component.

Important variables should be close to the large circle, see González et al. 2012 for more details.

plotVar displays the variables from all blocks, selected on component 1 and 2. Clusters of points

indicate a strong correlation between variables. For better visibility we choose to hide the variable

names.

> plotVar(sgccda.res, var.names = FALSE, style = 'graphics', legend = TRUE,

+ pch = c(16, 17, 15), cex = c(2,2,2), col = c('darkorchid', 'brown1', 'lightgreen'))

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Component  1

C
om

po
ne

nt
  2

Block

mRNA
miRNA
proteomics

Correlation Circle Plots

We can also only display the variables selected on a specific component, here component 1:

> plotVar(sgccda.res, var.names = FALSE, style = 'graphics', legend = TRUE,

+ pch = c(16, 17, 15), cex = c(2,2,2), col = c('darkorchid', 'brown1', 'lightgreen'),
+ comp.select = 1)
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The circos plot represents the correlations between variables of different types, represented on

the side quadrants. Several display options are possible, to show within and between connexions

between blocks, expression levels of each variable according to each class (argument line = TRUE).

The circos plot is built based on a similarity matrix, which was extended to the case of multiple

data sets from González et al. 2012.

> circosPlot(sgccda.res, cutoff = 0.7, line = TRUE,

+ color.blocks= c('darkorchid', 'brown1', 'lightgreen'),
+ color.cor = c("chocolate3","grey20"), size.labels = 1.5)
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Another visualisation of the correlation between the different types of variables is the relevance

network, which is also built on the similarity matrix. Each color represents a type of variable. A

threshold can also be set using the argument cutoff.

Note that sometimes the output may not show with Rstudio because of margin issues. The plot

can be saved as an image using the argument save and name.save. An interactive argument is

also available for the cutoff argument, see details in ?network.

> network(sgccda.res, blocks = c(1,2,3),

+ color.node = c('darkorchid', 'brown1', 'lightgreen'), cutoff = 0.4)
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The network can be saved in a .gml format to be input into the software Cytoscape, using the R
package igraph

> # not run

> library(igraph)

> my.network = network(sgccda.res, blocks = c(1,2,3),

+ color.node = c('darkorchid', 'brown1', 'lightgreen'), cutoff = 0.4)

> write.graph(my.network$gR, file = "myNetwork.gml", format = "gml")

plotLoadings visualises the loading weights of each selected variables on each component and

each data set. The color indicates the class in which the variable has the maximum level of expression

(contrib = ’max’) or minimum (contrib = ‘min’), on average (method = ‘mean’) or using the

median (method = ‘median’).

> plotLoadings(sgccda.res, comp = 2, contrib = 'max', method = 'median')
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The cimDiablo function is a clustered image map specifically implemented to represent the

multi-‘omics molecular signature expression for each sample.

> cimDiablo(sgccda.res, color.blocks = c('darkorchid', 'brown1', 'lightgreen'),
+ comp = 1, margin=c(8,20), legend.position = "right")
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E2.6. Performance of the model

We assess the performance of the model using 10-fold cross-validation repeated 10 times with the

function perf. The method runs a block.splsda model on the pre-specified arguments input from

our sgccda.res object but on cross-validated samples. We then assess the accuracy of the prediction

on the left out samples.

> set.seed(123) # for reproducibility, only when the `cpus' argument is not used

> t1 = proc.time()

> perf.diablo = perf(sgccda.res, validation = 'Mfold', folds = 10, nrepeat = 10,

+ dist = 'centroids.dist')
> t2 = proc.time()

> running_time = t2 - t1; running_time

user system elapsed

24.035 0.530 25.231

> #perf.diablo # lists the different outputs

>

> # Performance with Majority vote

> perf.diablo$MajorityVote.error.rate

$centroids.dist

comp 1 comp 2

Basal 0.02444444 0.04666667

Her2 0.20666667 0.15666667

LumA 0.04666667 0.01733333

Overall.ER 0.07200000 0.05400000

Overall.BER 0.09259259 0.07355556

> # Performance with Weighted vote

> perf.diablo$WeightedVote.error.rate

$centroids.dist

comp 1 comp 2

Basal 0.01777778 0.04000000

Her2 0.13666667 0.13000000

LumA 0.04666667 0.01733333

Overall.ER 0.05600000 0.04666667

Overall.BER 0.06703704 0.06244444

In addition to the usual (balanced) classification error rates, predicted dummy variables and

variates, as well as stability of the selected features, the perf function for DIABLO outputs the

performance based on Majority Vote (each data set votes for a class for a particular test sample)

or a weighted vote, where the weight is defined according to the correlation between the latent

component associated to a particular data set and the outcome.

Since the tune function was used with the centroid.dist argument, we examine the outputs of

the perf function for that same distance.

An AUC plot per block is plotted using the function auroc, refer to Rohart et al. 2017 for the

interpretation of such output as the ROC and AUC criteria are not particularly insightful in relation

to the performance evaluation of our methods, but can complement the statistical analysis.
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> auc.diablo = auroc(sgccda.res, roc.block = "miRNA", roc.comp = 2)
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E2.7. Prediction on an external test set.

The predict function predicts the class of samples from a test set. In our specific case, one data set

is missing in the test set but the method can still be applied. Make sure the name of the blocks

correspond exactly.

> # prepare test set data: here one block (proteins) is missing

> data.test.TCGA = list(mRNA = breast.TCGA$data.test$mrna,

+ miRNA = breast.TCGA$data.test$mirna)

> predict.diablo = predict(sgccda.res, newdata = data.test.TCGA)

> # the warning message will inform us that one block is missing

> #predict.diablo # list the different outputs

The confusion table compares the real subtypes with the predicted subtypes for a 2 component

model, for the distance of interest:

> confusion.mat = get.confusion_matrix(truth = breast.TCGA$data.test$subtype,

+ predicted = predict.diablo$WeightedVote$centroids.dist[,2])

> confusion.mat

predicted.as.Basal predicted.as.Her2 predicted.as.LumA

Basal 20 1 0

Her2 0 14 0

LumA 0 1 34

> get.BER(confusion.mat)

[1] 0.02539683
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E2.8. Session information of this Sweave code

> sessionInfo()

R version 3.4.1 (2017-06-30)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: macOS Sierra 10.12.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:

[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] mixOmics_6.3.0 ggplot2_2.2.1 lattice_0.20-35 MASS_7.3-47

loaded via a namespace (and not attached):

[1] Rcpp_0.12.13 RSpectra_0.12-0 compiler_3.4.1 RColorBrewer_1.1-2

[5] plyr_1.8.4 bindr_0.1 tools_3.4.1 digest_0.6.12

[9] jsonlite_1.5 tibble_1.3.4 gtable_0.2.0 pkgconfig_2.0.1

[13] rlang_0.1.2 Matrix_1.2-11 igraph_1.1.2 shiny_1.0.5

[17] parallel_3.4.1 bindrcpp_0.2 gridExtra_2.3 stringr_1.2.0

[21] dplyr_0.7.4 knitr_1.17 htmlwidgets_0.9 tidyselect_0.2.0

[25] grid_3.4.1 glue_1.1.1 ellipse_0.3-8 R6_2.2.2

[29] rARPACK_0.11-0 rgl_0.98.1 tidyr_0.7.1 purrr_0.2.3

[33] reshape2_1.4.2 corpcor_1.6.9 magrittr_1.5 scales_0.5.0

[37] htmltools_0.3.6 matrixStats_0.52.2 assertthat_0.2.0 mime_0.5

[41] colorspace_1.3-2 xtable_1.8-2 httpuv_1.3.5 labeling_0.3

[45] stringi_1.1.5 lazyeval_0.2.0 munsell_0.4.3

Writing to file DIABLO-analysis.R
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