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Challenges

The issue with integrative systems biology

m Unlimited quantity of data
(n << p problem)

GET ALL THE
INFORMATION YoU CAN,
WE'LL THINK 0F A

USE FOR (T LATER,

m Data from multiple sources

DNA  SEETIREIREEY  Genomics <2500 genes

\ B30

RNA ’:S‘?‘S’:"‘: Transcriptomics: ~100.000 transcripts
PN

Protein » ‘7}:{ : ~~©~  Proteomics: ~1,000,000 proteins

metabolites. DEL‘? # g Membolomics: ~2.400 compounds

— Efficient and biologically relevant statistical methodologies are
needed to combine the information in these heterogeneous data
sets.
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The biological questions

Single Omics analysis

m Do we observe a ‘natural’ separation between the different
groups of patients?

m Can we identify potential biomarker candidates predicting the
status of the patients?

Integrative Omics analysis

m Can we identify a subset of correlated genes and proteins from
matching data sets?

m Can we predict the abundance of a protein given the
expression of a small subset of genes?

m Do two matching omics data set contain the same
information?
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The data

The data

n = number of patients
p. ¢ = number of biological features (genes, proteins ..)
Single Omics analysis
m one omic data set X(n x p)
m for a supervised analysis, Y vector indicating the class of the
patients

Integrative Omics analysis
m two matching omics data sets (measured on the same patients)

m X (nxp)and Z (nxgq)
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Multivariate analysis

Linear multivariate approaches enable:

m Dimension reduction
— project the data in a smaller subspace

m To handle multicollinear, irrelevant, missing variables

m To capture experimental annd biological variation

In particular, in mixOmics, focus is on:
m Data integration
m Variable selection

m Computationally efficient methodologies for large biological
data sets

m Interpretable graphical outputs

Kim-Anh L& Cao
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mixOmics

mixOmics is an R package dedicated to the exploration and the
integrative analyses of high dimensional biological data sets.

mixOmics wizard

Project Name:
ot

Please choose your methodology
0 (PR O

O (IPAD

o(nccae

© (s)pLS

O (5)PS0AD

© I don't know yet, guide me through my options

m Website m Web Interface
- R tutorials - User friendly interface
- Newsletter - Comprehensive results page

-Lé Cao et al. (2009) integRomics/mixOmics: an R package to unravel

relationships between two omics data sets, Bioinformatics
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mixOmics

One data set

(nxp)

Multivariate : Graphical
approach RV outputs
bie selection =
Sample plots

Two matching
data sets
(nxp)&(nxaq)

sPLS

canonical

Missing values
(nxp)

imputation

NIPALS




Concept of mixOmics Sing
[ le]e}

Introduction with PCA

Principal Component Analysis: PCA

Seek the best directions in the data that account for most of the
variability

— principal components: artificial variables
that are linear combinations of the original \/

variables:

c = X v
(n) (nxp) (p)

m C is a linear function of the elements of X having maximal
variance

m v is called the associated loading vector
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Introduction with PCA

Principal components cont.

The new PCs form a vectorial
subspace of dimension < p

Project the data on these new
axes.

— approximate representation of the data points in a lower
dimensional space

Problem:
Interpretation difficult with very large number of (possibly)
irrelevant variables

Kim-Anh L& Cao
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Introduction with PCA

sparse Principal Component Analysis: sPCA

Principal components

loading vectors sparse loading vectors
(PCA) (sPCA)
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The principal components are linear combinations of the original
variables, variables weights are defined in the associated loading
vectors.

sparse PCA computes the sparse loading vectors to remove

irrelevant variables using lasso penalizations (Shen & Huang 2008, J.
Multivariate Analysis).

H
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Independent Principal Component Analysis

IPCA is based on Independent Component Analysis (ICA):
m assumes non Gaussian data distribution (# PCA).

‘blind source’ signal separation.

seeks for a set of independent components (# PCA).

Combines the advantages of both PCA and ICA.

The PCA loadings are transformed via ICA to obtain
independent loading vectors and independent principal
components.

m sparse IPCA also developed to select the variable contributing
to the independent loading vectors

Yao, F. Coquery, J. and L& Cao, K-A. 2012 Independent Principal Component
Analysis for biologically meaningful dimension reduction of large biological data sets,
BMC Bioinformatics.
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Single Omics Analysis

Independent Principal Component Analysis

[llustration of PCA and IPCA

Sample representation for the kidney transplant study (3 groups of

Dimension 2

rejection status patients)

0 50 100
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-150 -100

PCA (Genomics)
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Discriminant Analysis

PLS - Discriminant Analysis

m Similarly to Linear Discriminant Analysis, classical PLS-DA
looks for the best components to separate the sample groups.

m As opposed to PCA/IPCA methods, it is a supervised
approach.

m In addition to this, sSPLS-DA searches for discriminative
variables that can help separating the sample groups.

m Evaluation of the discriminative power of the selected variables
using external data sets or cross-validation.

Lé Cao K-A., Boitard S. and Besse P. (2011) Sparse PLS Discriminant Analysis:
biologically relevant feature selection and graphical displays for multiclass problems,
BMC Bioinformatics, 12:253.
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Single Omics Analysis

Discriminant Analysis

[llustration of sPLS-DA

; e Genomics
Genomics - training data
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Figure: Predicting the class of the
test set samples

Figure: Tuning the number of var.
to select with cross-validation
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Aims:
m unravel the correlation stucture between two data sets
m select co-regulated biological entities across samples
— select and integrate in a one step procedure the different types
of data

m Partial Least Squares regression maximises the covariance
between each linear combination (components) associated to
each data set

m sparse PLS has been developed to include variable selection
from both data sets

m Two modes are proposed to model the relationship between
the two data sets ('regression’ and 'canonical’)

Lé Cao et al. (2008), SAGMB, Lé Cao et al. (2009), BMC Bioinformatics
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Integrating genomics and proteomics

lllustration of sparse PLS: sample plot

sPLS aims at selecting correlated variables (genes, proteins) across
the same samples by performing a multivariate regression.
Regression: explain the protein abundance w.r.t the gene expression
"= relationship”.

0.4

m The latent variables (components)
are determined based on the oo
selected genes and proteins oo 2
— give more insight into the
samples similarities.

0.0

m Unsupervised approach 02
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Relevance networks are bipartite graphs directly
inferred from the sPLS components.

Some other insightful graphical outputs:

m correlation )
circle plots e

m clustered
image maps

Gonzalez |., L& Cao K.-A., Davis, M.D. and Dégjean S. Visualising association between

paired ‘omics’ data sets. In revision.
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Comparing two proteomics platforms

Analysis

[llustration of sPLS canonical mode

Selects correlated variables across the same samples and highlights
the correlation structure between the two data sets.

Canonical mode: “& relationship”

LEU

coLcor By /
) U
ol TN S B ey
L PGB o PTEU
oINS -
ol

»
ONS NS NSNS

R eons

MEL T

(MEL] MEL — CNs|

MEL &b ME] — coL|

s —LE

[} — MEL|

EL BR NS

—ov

MEL PR

/' __ RE

Figure: Arrow plot to highlight the similarties
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Multilevel analysis

Cross-over design

nterna
variable
selection

Multivariate
approach

phical
outputs

Sample plots

One data set
repeated
measurements
(nxp)

Variable plots

Two matching data

sets canonical, 1 level multilevel Fro- I
repetated SPLS |
measurements e

(nxp) & (nxq)

A novel approach for cross-over designs (repeated
measurements up to 2 cross factors)
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Conclusions

Conclusions

The exploratory and integrative approaches are:
m flexible and can answer various types of questions.
m can highlight the potential of the data.
m enable to generate new hypotheses to be further investigated.

Future work includes:

m Cross-platform comparison
m Integration of multiple data sets (unsupervised and supervised)

m Time-course experiments
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Questions?

Questions?

WO FAB ™

DRIVING YOUR RESEARCH FURTHER

~ Home | MixOmics Homes About QFAB

mixOmics wizard

Project Name:
Project 1

Please choose your methodology

O (s)PCA @

O (s)IPCA @

O (NccA @

O (s)PLS @

O (s)PLS-DA @

© Idon't know yet, guide me through my options

http://mixomics.qfab.org
mixomics@math.univ-toulouse.fr

k.lecao@uq.edu.au
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