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Unravelling `omics' data with the mixOmics R

package

Illustration on several studies
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Challenges

The issue with integrative systems biology

Unlimited quantity of data
(n << p problem)

Data from multiple sources

→ E�cient and biologically relevant statistical methodologies are
needed to combine the information in these heterogeneous data
sets.
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The biological questions

Single Omics analysis

Do we observe a `natural' separation between the di�erent
groups of patients?

Can we identify potential biomarker candidates predicting the
status of the patients?

Integrative Omics analysis

Can we identify a subset of correlated genes and proteins from
matching data sets?

Can we predict the abundance of a protein given the
expression of a small subset of genes?

Do two matching omics data set contain the same
information?
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The data

The data

n = number of patients
p, q = number of biological features (genes, proteins ..)

Single Omics analysis

one omic data set X(n x p)

for a supervised analysis, Y vector indicating the class of the
patients

Integrative Omics analysis

two matching omics data sets (measured on the same patients)

X (n x p) and Z (n x q)
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Multivariate analysis

Linear multivariate approaches enable:

Dimension reduction
→ project the data in a smaller subspace

To handle multicollinear, irrelevant, missing variables

To capture experimental annd biological variation

In particular, in mixOmics, focus is on:

Data integration

Variable selection

Computationally e�cient methodologies for large biological
data sets

Interpretable graphical outputs
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mixOmics

mixOmics is an R package dedicated to the exploration and the
integrative analyses of high dimensional biological data sets.

Website
- R tutorials
- Newsletter

Web Interface
- User friendly interface
- Comprehensive results page

-Lê Cao et al. (2009) integRomics/mixOmics: an R package to unravel

relationships between two omics data sets, Bioinformatics
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mixOmics
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Introduction with PCA

Principal Component Analysis: PCA

Seek the best directions in the data that account for most of the
variability

→ principal components: arti�cial variables
that are linear combinations of the original
variables:

c = X v
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c is a linear function of the elements of X having maximal
variance

v is called the associated loading vector
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Introduction with PCA

Principal components cont.

The new PCs form a vectorial
subspace of dimension < p

Project the data on these new
axes.
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→ approximate representation of the data points in a lower
dimensional space

Problem:
Interpretation di�cult with very large number of (possibly)
irrelevant variables
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Introduction with PCA

sparse Principal Component Analysis: sPCA

Principal components
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sparse loading vectors
(sPCA)
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The principal components are linear combinations of the original
variables, variables weights are de�ned in the associated loading
vectors.
sparse PCA computes the sparse loading vectors to remove
irrelevant variables using lasso penalizations (Shen & Huang 2008, J.

Multivariate Analysis).
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Independent Principal Component Analysis

IPCA is based on Independent Component Analysis (ICA):

assumes non Gaussian data distribution ( 6= PCA).

`blind source' signal separation.

seeks for a set of independent components ( 6= PCA).

Combines the advantages of both PCA and ICA.

The PCA loadings are transformed via ICA to obtain
independent loading vectors and independent principal
components.

sparse IPCA also developed to select the variable contributing
to the independent loading vectors

Yao, F. Coquery, J. and Lê Cao, K-A. 2012 Independent Principal Component

Analysis for biologically meaningful dimension reduction of large biological data sets,

BMC Bioinformatics.
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Independent Principal Component Analysis

Illustration of PCA and IPCA
Sample representation for the kidney transplant study (3 groups of
rejection status patients)
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Discriminant Analysis

PLS - Discriminant Analysis

Similarly to Linear Discriminant Analysis, classical PLS-DA
looks for the best components to separate the sample groups.

As opposed to PCA/IPCA methods, it is a supervised
approach.

In addition to this, sPLS-DA searches for discriminative
variables that can help separating the sample groups.

Evaluation of the discriminative power of the selected variables
using external data sets or cross-validation.

Lê Cao K-A., Boitard S. and Besse P. (2011) Sparse PLS Discriminant Analysis:

biologically relevant feature selection and graphical displays for multiclass problems,

BMC Bioinformatics, 12:253.
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Discriminant Analysis

Illustration of sPLS-DA
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Motivation

Aims:

unravel the correlation stucture between two data sets

select co-regulated biological entities across samples

→ select and integrate in a one step procedure the di�erent types
of data

Partial Least Squares regression maximises the covariance
between each linear combination (components) associated to
each data set

sparse PLS has been developed to include variable selection
from both data sets

Two modes are proposed to model the relationship between
the two data sets ('regression' and 'canonical')

Lê Cao et al. (2008), SAGMB, Lê Cao et al. (2009), BMC Bioinformatics
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Integrating genomics and proteomics

Illustration of sparse PLS: sample plot
sPLS aims at selecting correlated variables (genes, proteins) across
the same samples by performing a multivariate regression.
Regression: explain the protein abundance w.r.t the gene expression
�⇒ relationship�.

The latent variables (components)
are determined based on the
selected genes and proteins
→ give more insight into the
samples similarities.

Unsupervised approach
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Integrating genomics and proteomics

Illustration of sparsePLS: variable plot

Relevance networks are bipartite graphs directly
inferred from the sPLS components.

Some other insightful graphical outputs:

correlation
circle plots

clustered
image maps
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González I., Lê Cao K.-A., Davis, M.D. and Déjean S. Visualising association between

paired `omics' data sets. In revision.
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Comparing two proteomics platforms

Illustration of sPLS canonical mode
Selects correlated variables across the same samples and highlights
the correlation structure between the two data sets.
Canonical mode: �⇔ relationship�
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Figure: Arrow plot to highlight the similarties between 2 data sets
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Multilevel analysis

Cross-over design

One data set 
repeated 

measurements 
(n x p) 

Two matching data 
sets 

repetated 
measurements 
(n x p) & (n x q) 

multilevel 
PLS-DA 

multilevel 
PLS 

Internal 
variable 
selection 

Multivariate 
approach Data 

multilevel 
sPLS-DA 

multilevel 
sPLS 

Graphical 
outputs 

supervised 

Sample plots 

Variable plots 

canonical, 1 level 

A novel approach for cross-over designs (repeated 
measurements up to 2 cross factors) 
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Multilevel analysis

Illustration of multilevel sPLS-DA
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Conclusions

Conclusions

The exploratory and integrative approaches are:

�exible and can answer various types of questions.

can highlight the potential of the data.

enable to generate new hypotheses to be further investigated.

Future work includes:

Cross-platform comparison

Integration of multiple data sets (unsupervised and supervised)

Time-course experiments
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Conclusions
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Questions?

Questions?

http://mixomics.qfab.org
mixomics@math.univ-toulouse.fr

k.lecao@uq.edu.au
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