Webinar: Φ-Space for continuous phenotyping of single-cell multi-omics data

We have developed a new PLS method for cell type continuous annotation of single cells, now in preprint!

  • Φ-Space addresses numerous challenges faced by state-of-the-art automated annotation methods:
    • to identify continuous and out-of-reference cell states,
    • to deal with batch effects in reference,
    • to utilise bulk references and multi-omic references.
  • Φ-Space uses soft classification to phenotype cells on a continuum. The continuous annotation, or phenotype space embedding is then used to reduce the dimensionality of the data for various downstream analyses.

Φ-Space: Continuous phenotyping of single-cell multi-omics data. Jiadong Mao, Yidi Deng, Kim-Anh Lê Cao. bioRxiv 2024. 

View this 52min video of Kim-Anh Lê Cao presenting Φ-Space at the WEHI Bioinformatics seminar:

Abstract

Single-cell multi-omics technologies have empowered increasingly refined characterisa- tion of the heterogeneity of cell populations. Automated cell type annotation methods have been developed to transfer cell type labels from well-annotated reference datasets to emerging query datasets. However, these methods suffer from some common caveats, including the failure to characterise transitional and novel cell states, sensitivity to batch effects and under-utilisation of phenotypic information other than cell types (e.g. sample source and disease conditions).

We developed Φ-Space, a computational framework for the continuous phenotyping of single-cell multi-omics data. In Φ-Space we adopt a highly versatile modelling strategy to continuously characterise query cell identity in a low-dimensional phenotype space, defined by reference phenotypes. The phenotype space embedding enables various downstream analyses, including insightful visualisations, clustering and cell type labelling.

We demonstrate through three case studies that Φ-Space (i) characterises develop- ing and out-of-reference cell states; (ii) is robust against batch effects in both reference and query; (iii) adapts to annotation tasks involving multiple omics types; (iv) over- comes technical differences between reference and query.

The Φ-Space package

Φ-Space is currently not directly available from the mixOmics package, instead it is a separate R package that can be installed from Github.

Webinar: PCA and PLS-DA

These two recordings were part of a presentation to WEHI for their postgraduate lecture series for a diverse audience.

In the PCA presentation (18 min), we explain the concept of linear combination of variables (components) and useful graphical outputs such as correlation circle plots and biplots.

In the PLS-DA presentation (7 min), we talk about the concept of multivariate signature.

If you want to know more about the actual algorithm under the hood, you can watch this webinar on PLS.

[closed] Self-paced online course Oct 21 – Dec 6 2024

Unfortunately we had to cancel the workshop as we did not receive a sufficient number of participants to justify running the workshop at this time. These workshops involve peer review and a cohort feel to provide the best experience to our learners.

Register your EOI here and we will let you know when the registration page is up. Our next intake is scheduled for February 2025.

Feedback from a previous iteration can be found here.

Key summary

  • The new course is open and will run for 7 weeks. This course is online, but at your own pace, meaning that you need to dedicate enough time (5-8h per week) to fully benefit from the program.
  • There are 4 weeks of asynchronous learning (you work at our own pace to cover the material each week).
  • There are 4 live webinars organised on the first 4 Thursdays at 5pm AEST (convert your time here)  to summarise some key concepts and ask your questions (the webinars will be recorded, as there are daylight savings during this period).
  • You will have the opportunity to chat on Slack and ask your questions during the whole course.
  • You can analyse your own data for the assessment (due in week 6) or use the data provided. You will reinforce your learning by marking the assignments of 2-3 other learners.
  • Teaching Period Dates, asynchronised:
    • Teaching commences: Monday, 21 Oct 2024, 9:00 am AEST
    • Teaching concludes: Sunday, 17 Oct 2024, 11:59 pm AEST (after 4 weeks)
    • (non marked) Assessment due: Friday 29 Nov 2024 (2 weeks prep)
    • Peer-review of assessment due: Friday 6 Dec 2024 (1 week prep)
  • Fees vary for
    • Research Higher Degree students enrolled at a University: $495 AUD (incl. GST) [discount code: MIXO_RHD]
    • Staff and members from Universities & Not-for-profit organisations: $825 (incl. GST) [discount code: MIXO_NFP_STAFF]
    • Other industries: $1320 AUD (incl. GST)
    • discounts of 5% for a group of 3-9 learners and 10% for 10+ learners, however, this will require a single invoice per group.

(these funds go towards the support of a software developer to maintain the package)

Information about the course and registration: https://study.unimelb.edu.au/find/short-courses/mixomics-r-essentials-for-biological-data-integration/

The number of places is limited, so first come first serve (this course runs once or twice a year)

What if I need an invoice? Contact Student Support at continuing-education[at]unimelb.edu.au

Prerequisites. A good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) is essential to fully benefit from the course*. The course is divided into theory (50%) and hands-on practice, with the opportunity to analyse your own data. The exercises and assignments are in R. Participants are encouraged to use RStudio and Rmarkdown (template and R code provided).

*Learners who are not proficient in R do not get the full benenefit of the course (based on their own, honest, feedback!)