/**
* jQuery Plugin: Sticky Tabs
*
* @author Aidan Lister
// Set the correct tab when the page loads showStuffFromHash(context);
// Set the correct tab when a user uses their back/forward button $(window).on('hashchange', function() { showStuffFromHash(context); });
// Change the URL when tabs are clicked $('a', context).on('click', function(e) { history.pushState(null, null, this.href); showStuffFromHash(context); });
return this; }; }(jQuery));
window.buildTabsets = function(tocID) {
// build a tabset from a section div with the .tabset class function buildTabset(tabset) {
// check for fade and pills options var fade = tabset.hasClass("tabset-fade"); var pills = tabset.hasClass("tabset-pills"); var navClass = pills ? "nav-pills" : "nav-tabs";
// determine the heading level of the tabset and tabs var match = tabset.attr('class').match(/level(\d) /); if (match === null) return; var tabsetLevel = Number(match[1]); var tabLevel = tabsetLevel + 1;
// find all subheadings immediately below var tabs = tabset.find("div.section.level" + tabLevel); if (!tabs.length) return;
// create tablist and tab-content elements var tabList = $('
'); $(tabs[0]).before(tabList); var tabContent = $('
'); $(tabs[0]).before(tabContent);
// build the tabset var activeTab = 0; tabs.each(function(i) {
// get the tab div var tab = $(tabs[i]);
// get the id then sanitize it for use with bootstrap tabs var id = tab.attr('id');
// see if this is marked as the active tab if (tab.hasClass('active')) activeTab = i;
// remove any table of contents entries associated with // this ID (since we'll be removing the heading element) $("div#" + tocID + " li a[href='#" + id + "']").parent().remove();
// sanitize the id for use with bootstrap tabs id = id.replace(/[.\/?&!#<>]/g, '').replace(/\s/g, '_'); tab.attr('id', id);
// get the heading element within it, grab it's text, then remove it var heading = tab.find('h' + tabLevel + ':first'); var headingText = heading.html(); heading.remove();
// build and append the tab list item var a = $('' + headingText + ''); a.attr('href', '#' + id); a.attr('aria-controls', id); var li = $('
'); li.append(a); tabList.append(li);
// set it's attributes tab.attr('role', 'tabpanel'); tab.addClass('tab-pane'); tab.addClass('tabbed-pane'); if (fade) tab.addClass('fade');
// move it into the tab content div tab.detach().appendTo(tabContent); });
// set active tab $(tabList.children('li')[activeTab]).addClass('active'); var active = $(tabContent.children('div.section')[activeTab]); active.addClass('active'); if (fade) active.addClass('in');
if (tabset.hasClass("tabset-sticky")) tabset.rmarkdownStickyTabs(); }
// convert section divs with the .tabset class to tabsets var tabsets = $("div.section.tabset"); tabsets.each(function(i) { buildTabset($(tabsets[i])); }); };
All methodologies implemented in mixOmics can handle missing values.
In particular, (s)PLS, (s)PLS-DA,
(s)PCA utilise the NIPALS
(Non-linear Iterative
Partial Least
Squares) algorithm as part of their dimension reduction
procedures. This algorithm is built to handle NAs
[1].
This is implemented through the nipals()
function within
mixOmics. This function is called internally by the above methods but
can also be used manually, as can be seen below.
Usage in mixOmics
library(mixOmics)
data(liver.toxicity)
X <- liver.toxicity$gene[, 1:100] # a reduced size data set
## pretend there are 20 NA values in our data
na.row <- sample(1:nrow(X), 20, replace = TRUE)
na.col <- sample(1:ncol(X), 20, replace = TRUE)
X.na <- as.matrix(X)
## fill these NA values in X
X.na[cbind(na.row, na.col)] <- NA
sum(is.na(X.na)) # number of cells with NA
## [1] 20
# this might take some time depending on the size of the data set
nipals.tune = nipals(X.na, ncomp = 10)$eig
barplot(nipals.tune, xlab = 'Principal component', ylab = 'Explained variance')
Component.
If missing values need to be imputed, the package contains
impute.nipals()
for this scenario. NIPALS
is used to decompose the dataset. The resulting components, singular
values and feature loadings can be used to reconstitute the original
dataset, now with estimated values where the missing values were
previously. To allow for the best estimation of missing values, there is
a large number of components being used (ncom = 10
).
X.impute <- impute.nipals(X = X.na, ncomp = 10)
sum(is.na(X.impute)) # number of cells with NA
## [1] 0
The difference between the imputed and real values can be checked.
Here are the original values:
id.na = is.na(X.na) # determine position of NAs in dataframe
X[id.na] # show original values
## [1] 0.09041 -0.04070 0.03497 -0.01712 0.01309 0.00233 -0.04142 0.11104
## [9] -0.01519 -0.17034 -0.01641 0.15964 0.00557 -0.06217 0.04131 0.02157
## [17] 0.01226 -0.00753 0.03038 -0.00783
The values which were estimated via the NIPALS
algorithm:
X.impute[id.na] # show imputted values
## [1] 0.0837747419 -0.0190061068 0.0004024897 -0.0180879247 -0.0094185656
## [6] -0.0312362158 -0.0706920015 0.1400817774 0.0083359545 -0.1158255139
## [11] 0.0164817649 0.1007897385 0.0236184385 0.0191934144 0.0214240977
## [16] 0.0686280312 -0.0039198425 0.0085870558 0.0450234407 0.0013964758
// add bootstrap table styles to pandoc tables function bootstrapStylePandocTables() { $('tr.odd').parent('tbody').parent('table').addClass('table table-condensed'); } $(document).ready(function () { bootstrapStylePandocTables(); });