The mixOmics package

mixOmics is an R package designed for the analysis and visualization of high-throughput data. It includes statistical methods, plotting functions, and example datasets for various biological questions. Here’s a quick guide to what you’ll find inside:

💡 Note: for unfamiliar terms check out our Glossary


1. Statistical methods to analyse high throughput data

We offer a range of powerful statistical methods for analyzing your data. Here are some key methods:

Learn More: Check out our mixOmics article for an overview of integrative and supervised methods.


2. Plotting functions to display and interpret the results

  • 2D and 3D sample plot: to visualise sample relationships
  • Arrow plots: to visualise paired coordinates
  • Relevance Network Graphs:to visualise associations between variables
  • Clustered Image Maps:heatmaps of expression values or correlation between variables
  • Correlation circle plots:correlation of variables to latent components
  • Circos plots: for DIABLO analyses, visualise how modalities relate to each other – Singh et al. 2019
  • Loading plots:to visualise variable importance – Lê Cao et al. 2016

Learn More: Check out our González et al. 2012 for an overview of network graphs, clustered image maps and correlation circle plots


3. Example data sets

To help you get started, we provide a variety of datasets illustrating different biological questions, some of these are used in the case studies.

DataIntegration typeOmicsSamplesGroupsCase studyPublication
MultidrugSingle omicsTransporter expression, drug activity607 cell linessPCA, sPCA case studySzakács et al., 2004
SRBCTSingle omicsmRNA634 tumour classesPerformance assessment and parameter tuning, sPLS-DA, sPLS-DA case studyKhan et al, 2001
vac18Single omicsmRNA424 stimulation groups, multilevelMultilevel, Multilevel case studySalmon-Céron et al. 2010
liver.toxicityN-integration- two omicsmRNA, clinical data644 treatment doses, 4 treatment timesMissing Values, Parameter tuning, sIPCA, sIPCA case study, sPLS, sPLS case studyBushel et al., 2007
nutrimouseN-integration-two omicsmRNA, lipid data404 diet groups, 2 genotypesrCCA, rCCA case studyMartin et al., 2007
breast.TGCAN-integration-multiomicsmiRNA, mRNA, protein150 training, 70 test 3 cancer subtypesDIABLO, DIABLO case studyNetwork et al., 2012
stemcellsP-integrationmRNA1253 cell lines, 4 studiesMINT, MINT case study
diverse.16SSingle omicsmicrobiome1623 body sitesmixMC case studyHuman Microbiome Project 16S dataset
koren.16SSingle omicsmicrobiome433 body sitesmixMC pre-processing, mixMC case studyKoren et al. 2013