mixOmics website update

We’re pleased to share that the mixOmics website has undergone a redesign to enhance your browsing experience and make it easier to access our resources.

What’s New?

  • Refreshed Design: A cleaner, more modern layout
  • 📚 Expanded Getting Started Pages: Helpful pages to help you get up and running with mixOmics
  • 🧭 Reorganized Navigation: A more intuitive menu to quickly find key resources
  • 🔗 Updated Social Links: Stay connected with the mixOmics community
  • 💬 Direct Links to the User Forum: If you haven’t already, join our mixOmics user forum to connect with over 500 other users and experts
  • 🧑‍💻 Updated About Pages: Learn more about the project and our team
  • 📅 Streamlined Workshops, Webinars, and News Sections: Easier access to events and updates
  • 🖥️ Embedded R Markdown Pages: Improved code presentation with syntax highlighting in our Methods, Plots, and Case Studies pages

We are continuing to make small improvements, so if you encounter any issues or have feedback, please feel free to contact us.

Thank you for your continued support of mixOmics.

The mixOmics Team

mixOmics 6.30.0 on Bioconductor

At the end of October 2024 Bioconductor updated to version 3.20, and with it updated to the latest version of mixOmics 6.30.0. You can install the latest version of mixOmics on Bioconductor here. This latest release version of the package runs on R version 4.4 and includes some minor bug fixes and updated code and unit tests. See our Github page for more details on these updates.

[open] Self-paced online course Feb 24 – April 11, 2025

Single and multi-omics analysis and integration with mixOmics

This course is designed for:
  • Beginners looking for an introduction to mixOmics methods for single- and multi-omics analyses.
  • Current mixOmics users who want to deepen their understanding of the mixOmics methods.
  • Users who would like more guidance on analyzing their own data (we also provide exemplar datasets).

The workshop is self-paced and spans across 7 weeks. There are 4 Q&A live sessions, and many opportunities to interact with the cohort and your instructor Prof Kim-Anh Lê Cao via Slack. BYO data is encouraged: we provide advice so that you can analyse your own data with mixOmics tools as part of your learning process.  A good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) is essential to fully benefit from the course*. 

According to our past participants, a time commitment of 5-8h/week was sufficient to feel that they were progressing. Here is some feedback from a previous course.

We provide a certificate of attendance or completion.

Register here, places are limited!

Fees

Research Higher Degree students enrolled at a University: $495 AUD (incl. GST) [discount code: MIXO_RHD]

Staff and members from Universities & Not-for-profit organisations: $825 (incl. GST) [discount code: MIXO_NFP_STAFF]

Other industries: $1320 AUD (incl. GST)

discounts of 5% for a group of 3-9 learners and 10% for 10+ learners, however, this will require a single invoice per group.

These funds go towards the support of a software developer to maintain the package. If you need an invoice, contact Student Support at continuing-education[at]unimelb.edu.au

Teaching Period Dates
  • Teaching commences: Monday, 24 Feb 2025, 9:00 am AEST
    • Q&A live webinars are scheduled on Thursdays 6pm AEST / 8am CET during the first 4 weeks (27th Feb, 6th, 13th and 20th March).
    • An additional session might be added on Fridays 9am AEST ( = Thursdays 2pm PST / 5pm EST / 9pm CET)

  • Teaching concludes: Sunday, 23 March 2025, 11:59 pm AEST (after 4 weeks)
  • (non marked) Assessment due: Friday 4 April 2025 (2 weeks prep)
  • Peer-review of assessment due: Friday 11 April 2025 (1 week prep)

The course is divided into theory (50%) and hands-on practice, with the opportunity to analyse your own data. The exercises and assignments are in R. Participants are encouraged to use RStudio and Rmarkdown (template and R code provided).

*Need an R refresher?

Learners who are not proficient in R do not get the full benenefit of the course (based on their own, honest, feedback!) For those looking for an R refresher well ahead of the course:

[closed] Self-paced online course Oct 21 – Dec 6 2024

Unfortunately we had to cancel the workshop as we did not receive a sufficient number of participants to justify running the workshop at this time. These workshops involve peer review and a cohort feel to provide the best experience to our learners.

Register your EOI here and we will let you know when the registration page is up. Our next intake is scheduled for February 2025.

Feedback from a previous iteration can be found here.

Key summary

  • The new course is open and will run for 7 weeks. This course is online, but at your own pace, meaning that you need to dedicate enough time (5-8h per week) to fully benefit from the program.
  • There are 4 weeks of asynchronous learning (you work at our own pace to cover the material each week).
  • There are 4 live webinars organised on the first 4 Thursdays at 5pm AEST (convert your time here)  to summarise some key concepts and ask your questions (the webinars will be recorded, as there are daylight savings during this period).
  • You will have the opportunity to chat on Slack and ask your questions during the whole course.
  • You can analyse your own data for the assessment (due in week 6) or use the data provided. You will reinforce your learning by marking the assignments of 2-3 other learners.
  • Teaching Period Dates, asynchronised:
    • Teaching commences: Monday, 21 Oct 2024, 9:00 am AEST
    • Teaching concludes: Sunday, 17 Oct 2024, 11:59 pm AEST (after 4 weeks)
    • (non marked) Assessment due: Friday 29 Nov 2024 (2 weeks prep)
    • Peer-review of assessment due: Friday 6 Dec 2024 (1 week prep)
  • Fees vary for
    • Research Higher Degree students enrolled at a University: $495 AUD (incl. GST) [discount code: MIXO_RHD]
    • Staff and members from Universities & Not-for-profit organisations: $825 (incl. GST) [discount code: MIXO_NFP_STAFF]
    • Other industries: $1320 AUD (incl. GST)
    • discounts of 5% for a group of 3-9 learners and 10% for 10+ learners, however, this will require a single invoice per group.

(these funds go towards the support of a software developer to maintain the package)

Information about the course and registration: https://study.unimelb.edu.au/find/short-courses/mixomics-r-essentials-for-biological-data-integration/

The number of places is limited, so first come first serve (this course runs once or twice a year)

What if I need an invoice? Contact Student Support at continuing-education[at]unimelb.edu.au

Prerequisites. A good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) is essential to fully benefit from the course*. The course is divided into theory (50%) and hands-on practice, with the opportunity to analyse your own data. The exercises and assignments are in R. Participants are encouraged to use RStudio and Rmarkdown (template and R code provided).

*Learners who are not proficient in R do not get the full benenefit of the course (based on their own, honest, feedback!)

[closed] Self-paced online course Feb 5 – March 22 2024

This workshop is now closed. Fill in this short survey to register your interest. A new iteration of the course might be run between Sept – Nov if there is sufficient interest!

Key summary

  • The new course is open and will run for 7 weeks. This course is online, but at your own pace, meaning that you need to dedicate enough time (5-8h per week) to fully benefit from the program.
  • There are 4 weeks of asynchronous learning (you work at our own pace to cover the material).
  • There are 4 live webinars organised on the first 4 Thursdays at 5pm AEST (convert your time here)  to summarise some key concepts and ask your questions (the webinars will be recorded).
  • You will have the opportunity to chat on Slack and ask your questions during the whole course.
  • You can analyse your own data for the assessment (due in week 6) or use the data provided. You will reinforce your learning by marking the assignments of 2-3 other learners.

Feedback from the 2022 iteration can be found here.

  • Teaching Period Dates, asynchronised:
    • Teaching commences: Monday, 5 Feb 2024, 9:00 am AEST
    • Teaching concludes: Sunday, 29 Feb 2024, 11:59 pm AEST (4 weeks)
    • (non marked) Assessment due: Friday 15 March 2024 (2 weeks)
    • Peer-review of assessment due: Friday 22 March 2024 (1 week)
  • Fees vary for
    • Research Higher Degree students enrolled at a University: $495 AUD (incl. GST) [discount code: MIXO_RHD]
    • Staff and members from Universities & Not-for-profit organisations: $825 (incl. GST) [discount code: MIXO_NFP_STAFF]
    • Other industries: $1320 AUD (incl. GST)
    • discounts of 5% for a group of 3-9 learners and 10% for 10+ learners, however, this will require a single invoice per group.

(these funds go towards the support of a software developer to maintain the package)

The number of places is limited, so first come first serve (this course runs once or twice a year)

What if I need an invoice? Contact Student Support at continuing-education[at]unimelb.edu.au

Prerequisites. A good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) is essential to fully benefit from the course*. The course is divided into theory (50%) and hands-on practice, with the opportunity to analyse your own data. The exercises and assignments are in R. Participants are encouraged to use RStudio and Rmarkdown (template and R code provided).

*Learners who are not proficient in R do not get the full benefit of the course (based on their own, honest, feedback!)

[closed] Self-paced online course May 22 – July 7 2023

If you’ve missed out, our next iteration will run from 19th Feb – 5th April 2024. You can fill up this short survey to be notified when we open our next course.

Summary

  • The new course is open and will run for 7 weeks. This course is online, but at your own pace, meaning that you need to dedicate enough time (5-8h per week) to fully benefit from the program.
  • There are 4 weeks of asynchronous learning (you work at our own pace to cover the material).
  • There are 4 live webinars organised on Thursdays at 5pm AEST (convert your time here) in the first 4 weeks to summarise some key concepts and ask your questions (the webinars will be recorded).
  • You will have the opportunity to chat on Slack and ask your questions during the whole course.
  • You can analyse your own data for the assessment (due in week 6) or use the data provided. You will reinforce your learning by marking the assignments of 2-3 other learners.

Feedback from the 2022 iteration can be found here.

  • Teaching Period Dates, asynchronised:
    • Learning Start: Monday, 22 May 2023, 9:00 am AEST
    • Learning Ends: Sunday, 18 June 2023, 11:59 pm AEST (4 weeks)
    • (non marked) Assessment due: Friday 30th June 2023 (2 weeks)
    • Peer-review of assessment due: Friday 7th July 2023 (1 week)
  • Fees vary for
    • Research Higher Degree students enrolled at a University: $495 AUD (incl. GST)
    • Staff and members from Universities & Not-for-profit organisations: $825 (incl. GST)
    • Other industries: $1320 AUD (incl. GST)
    • discounts of 5% for a group of 3-9 learners and 10% for 10+ learners, however, this will require a single invoice per group.

(these funds go towards the support of a software developer to maintain the package)

The number of places is limited, so first come first serve (we aim to run this course twice a year).

What if I need an invoice? Contact Student Support at continuing-education[at]unimelb.edu.au

Prerequisites. A good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) is essential to fully benefit from the course*. The course is divided into theory (50%) and hands-on practice, with the opportunity to analyse your own data. The exercises and assignments are in R. Participants are encouraged to use RStudio and Rmarkdown (template and R code provided).

*Learners who are not proficient in R do not get the full benefit of the course (based on their own, honest, feedback!)

[closed] 13-14 March 2023, Brisbane, Aus

We will be running a 2-day workshop at Frazer Institute, University of Queendland. The workshop will cover 1.5 days of lectures and hands-on, and an additional 0.5 day for discussions and opportunities to analyse your own data (assuming the data are already processed and normalised).

Fill the survey so that you can register your interest and needs for this workshop. We can only allow a limited number of participants, so lock in those dates in your calendar before we confirm your participation! Priority will be given to postgraduate students and early career researchers. Results will be announced to the participants with details for registration on 17th February

Context. Advances in high-throughput technologies have transformed the way we examine molecular information, including microbial communities. However, analytical tool development is critically trailing behind data generation, which hinders the analysis, understanding or integration of omics data. Data integration adopt a holistic, data-driven and hypothesis-free approach. This new approach is necessary to understand the role of biological systems and posit new hypotheses.

The workshop will introduce concepts of multivariate dimension methods developed in mixOmics for statistical analysis. Our methods make no distributional assumptions, are highly flexible for unsupervised (exploratory), supervised (classification) and integration analyses. Various analytical frameworks will be presented ranging from data exploration, selection of markers, integration with other omics datasets and introduction to time-course analysis. There will be an opportunity also to analyse your own data.

Each method will be illustrated on real biological studies. The last afternoon is ‘BYO data’ where you can reinforce your learnings on your own study! 

Instructor: A/Prof Kim-Anh Lê Cao;Tutor: Nick Matigian (QCIF)

Organized and hosted by: Frazer institute, University of Queensland

There are no registration fees for this workshop. We do expect your attendance as the number of places is limited. The workshop is fully catered. Slides, R code and data will be provided.

Registration Fill the survey and lock the dates in your calendar! As we have a limited number of participants (30), priority will be given to postgraduate students and early career researchers. Results will be announced to the participants with details for registration after the survey’s deadline. Online attendance is also available for a limited number of participants (but with reduced opportunities for interactions).

Location: TBA, Translational Research Institute

Contact: kimanh.lecao[ at] unimelb.edu.au (for pre-requisite or content)

Prerequisite and requirements. We require from the trainees a good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) to fully benefit from the workshop. Participants are requested to bring their own laptop, having installed the software RStudio http://www.rstudio.com/and the R package mixOmics (instructions will be provided prior to the training).

Outline

The following broad topics will be covered during these two days:

A. Key methodologies in mixOmics and their variants:

  • Exploration of one data set with Principal Component Analysis (the basics!)
  • Identification of a molecular signature to discriminate different treatment groups with PLS-Discriminant Analysis
  • Integration of two data sets and identification of markers with PLS
  • Integration of more than two data sets to identify multi omics signatures (if sufficient interest) with PLS-DIABLO

B. Graphical outputs implemented in mixOmics

  • Sample plot representation
  • Variable plot representation for data integration
  • Other useful graphical outputs

C. Case studies and applications

Several omics studies (and microbiome if there is some interest) will be analysed using the methods presented above.

Day 2: bring your own data. Participants will be given the opportunity to analyse their own data under the guidance and the advice of the instructors. Participants can also work in a team. Your data need to be processed and normalised beforehand.

The following statistical concepts will be introduced: covariance and correlation, multiple linear regression, classification and prediction, cross-validation, selection of markers, penalised regressions. Each methodology will be illustrated on a case study (theory and application will alternate).

Target group The course is intended for molecular biologists working in the fields of bioinformatics, computational biology and applied statistics with some statistical knowledge and a good working knowledge in R. It will be particularly useful to those interested in:

  1. Exploring data sets.
  2. Selecting molecular signatures with methods implementing LASSO-based penalisations.
  3. Using graphical techniques to better visualise data.
  4. Understanding and/or applying multivariate projection methodologies to large data sets.

Anticipated learning outcomes After completion of this workshop, participants will be able to

  1. Understand fundamental principles of multivariate projection-based dimension reduction technique.
  2. Perform statistical integration and feature selection using recently developed multivariate methodologies.
  3. Apply those methods to high throughput microbiome studies, including their own studies.

[Closed] Self-paced online course Oct 31st – Nov 27 2022

The next iteration of the course will be in September 2023 for a likely duration of 6-8 weeks (it will be advertised 3 months before opening the course). This course is online, but at your own pace, meaning that you need to dedicate enough time (5-8h per week) to fully benefit from the program.

Feedback from the 2022 iteration:

  • You can do it at your own time since the resources provided (Webinars and reading material) are very helpful. Due to working hours I had to watch/read on demand (at my own time)
  • Kim-Anh has done a very good job in the webinars and was generally approachable and helpful. Thank you! The online course material was very good and explained the basics of the program quite well. The integration with the mixOmics online material and sample cases is very helpful.
  • It had the option to attend live webinars (two offered times) or watch recordings. – The possibility to ask questions was available for both live webinars and stack. – The assignments are designed to enhance further learning allowing to use of either own data or provided data at different challenge skills.
  • Course organisers were very responsive to our questions in Slack. Modules flowed nicely and were well organised. Webinars were useful.

This is our second round of online course ‘mixOmics R Essentials for Biological Data Integration‘ that includes 4 weeks of asynchronous learning (with one live summary + Q&A per week), numerous chats on Slack and an additional 3 weeks to complete the assignment. Some feedback from our last round can be found here. Our last survey seem to suggest most learners spent between 5-8h per week on the program.

  • Teaching Period Dates, asynchronised:
    • Start – Monday, 31st October 2022
    • End – Sunday, 27th November 2022
    • (non marked) Assessment due Sunday, 9th December 2022
    • Peer-review of assessment due Sunday, 16th December 2022
  • Fees vary for
    • Research Higher Degree students enrolled at a University: $495 AUD (incl. GST)
    • Staff and members from Universities & Not-for-profit organisations: $825 (incl. GST)
    • Other industries: $1320 AUD (incl. GST)
    • discounts of 5% for a group of 3-9 learners and 10% for 10+ learners, however, this will require a single invoice per group.

(these funds go towards the support of a software developer to maintain the package)

Information about the course and registration: https://study.unimelb.edu.au/find/short-courses/mixomics-r-essentials-for-biological-data-integration/

The number of places is limited, so first come first serve (we aim to run this course twice a year).

What if I need an invoice? Contact Student Support at continuing-education[at]unimelb.edu.au

Prerequisites. A good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) is essential to fully benefit from the course*. The course is divided into theory (50%) and hands-on practice, with the opportunity to analyse your own data. The exercises and assignments are in R. Participants are encouraged to use RStudio and Rmarkdown (template and R code provided).

*Learners who are not proficient in R do not get the full benefit of the course (based on their own, honest, feedback!)

Our book is out!

We are excited to announce that our book is out, along with several case studies and R scripts available online. Check out this page.

It’s been a very (very) long term project, and a great collaboration with Zoe Welham whose dedication and patience helped shape this project into a readable whole! A huge thank you to Al Abadi, who tirelessly helped updating the package as we developed the content.

[Closed] Self paced online course Oct 11 – Nov 7 2021

Our next round of online learning will be 31st October 2022!

Some feedback from this course:

Overall, this was a great course to take and I wish there would be more stats courses for biologists. Kim Anh is truly an amazing tutor. Approachable and knowledgeable. I am very happy that at the end of the course I can say that I am at a position when I feel confident to start applying the learn concepts. Definitely worth all my time and efforts! Thank you!

What were the best aspects of the program?

The practical tutorials and vignettes

I really enjoyed that the concept were well explained even for people not familiar with the methods. I liked the assignment part.

Self paced program, very focused content, easy to deep in it, very very useful the case studies provided, appropriate examples and detailed explanation; Curriculum design from easy to complicated

It has extremely useful online materials, Q&A session. I finally learnt a bit about mixomics and got some hands on practice

The content was great. I appreciate having access to content for a bit longer.

I enjoyed overall organization with: – online courses which enables us to learn at our own pace with theory and practice, – live Q&As beginning with a short summary – a slack channel for day to day questions
The utilization of Slack to exchange through the program was really appreciated. I also really liked the weekly webinar.

After more than 230 days in lockdown in Melbourne, we are finally announcing our new self paced course ‘mixOmics R Essentials for Biological Data Integration‘!

  • Teaching Period Dates (AEST), asynchronised:
    • Start – Monday, 11th October 2021
    • End – Sunday, 7th November 2021
    • (non marked) Assessment due Sunday, 14th November 2021
    • Peer-review of assessment due Sunday, 21st November 2021
  • Live Q&A:
    • Thursday 14th October 5:30pm AEST
    • Thursday 21st October 5:30pm AEST
    • Thursday 28th October 5:30pm AEST
    • Thursday 4th November 5:30pm AEST
  • Fees vary for
    • Research Higher Degree students enrolled in a University: $495 AUD (incl. GST)
    • Staff and members from Universities & Not-for-profit organisations: $825 (incl. GST)
    • Other industries: $1320.00 AUD (incl. GST)

Information about the course and registration: https://study.unimelb.edu.au/find/short-courses/mixomics-r-essentials-for-biological-data-integration/

The number of places is limited, so first come first serve (we aim to run this course twice a year).

What if I need an invoice? Contact Student Support at continuing-education[at]unimelb.edu.au

Prerequisites. A good working knowledge in R programming (e.g. handling data frame, perform simple calculations and display simple graphical outputs) will enable learners to fully benefit from the course. The course is divided into theory (50%) and hands-on practice, with the opportunity to analyse your own data. Participants are encouraged to use RStudio and Rmarkdown (template and R code provided).